Элеваторный узел системы отопления - устройство, назначение, расчеты
Элеваторный узел системы отопления: что это такое
Три режима работы магистральных сетей теплоснабжения измеряются в градусах, выглядят они так:
- 95/70.
- 130/70.
- 150/70.
Первое значение относится к температуре подачи, а второе соответственно обратному трубопроводу. Поскольку расстояние до котельных зачастую достаточно большое, происходит потеря энергии, вынуждающая вносить коррективы в числа с учетом погоды за окном. Эти три варианта были разработаны для экономии расхода топлива.
Общее описание
Прежде чем разбираться со схемой элеваторного узла отопления, нужно сказать, что по своей конструкции элеватор собой представляет некого рода циркуляционный насос, который находится в отопительной системе вместе с измерителями давления и запорной арматурой.
Тепловые элеваторные узлы в своей работе выполняют ряд функций. Для начала, это электронное устройство распределяет давление в отопительной системе, чтобы вода потребителям доставлялась в батареи отопления с определенным давлением и температурой. Во время циркуляции по трубам от котельной до многоэтажных домов объем теплового носителя в контуре увеличивается почти в два раза. Это может происходить, только если есть запас воды в отдельной герметичной емкости.
Чаще всего из котельной подается тепловой носитель, температурой около 110-160℃. Для бытовых нужд, в плане безопасности эти высокие температурные показатели недопустимы. Максимальный температурный режим теплоносителя в контуре не может быть более 90℃.
Из данного видео узнаем принцип работы элеваторного узла отопления:
Также примечательно, что в СНиП на сегодняшний день указан температурный норматив теплоносителя в диапазоне 65℃. Но для экономии ресурсов активно идет обсуждение относительно снижения этого норматива до 55℃. С учетом мнения экспертов потребитель не ощутит значительного отличия, а в качестве дезинфекции тепловой носитель раз в сутки будет необходимо нагревать до 75℃. Однако эти изменения в СНиП еще не приняты, так как нет точного мнения относительно эффективности и целесообразности этого решения.
Схема элеваторного узла системы отопления дает возможность привести температурный режим теплового носителя до нормативных требований.
Этот прибор позволяет не допустить следующих последствий:
- если разводка сделана из пропиленовых или пластиковых труб, то она не рассчитана на подачу горячего теплового носителя;
- не все трубы отопления рассчитаны на продолжительное действие повышенной температуры под высоким давлением — эти условия приведут к их быстрому выходу из строя;
- очень горячие радиаторы отопления при неаккуратном обращении могут привести к ожогам.
Зачем нужен тепловой узел
Тепловой пункт находится на вводе теплотрассы в дом. Главное его назначение — изменение параметров теплоносителя. Если говорить понятнее, то тепловой узел снижает температуру и давление теплоносителя перед тем как он попадет в ваш радиатор или конвектор. Нужно это не только для того, чтобы вы не обожглись от прикосновения к прибору отопления, но и для продления срока службы всего оборудования системы отопления
Особенно это важно, если внутри дома отопление разведено при помощи полипропиленовых или металлопластиковых труб. Существуют регламентированные режимы работы тепловых узлов:
Эти цифры показывают максимальную и минимальную температуру теплоносителя в теплотрассе.
Также, по современным требованием на каждом тепловом узле должен быть установлен прибор учета тепла. Теперь перейдем к устройству тепловых узлов.
Назначение элеваторного узла
Этот важный элемент в системе предназначен для понижения давления и нормализации температуры теплоносителя. Происходит процесс путем добавления в трубопровод более холодной воды из цепи отопления.
Согласно общепринятым санитарным нормам жидкость в радиаторах не должна превышать показателя в 95 градусов, приведу несколько очевидных фактов, касающихся этого момента:
- Максимально нагретые приборы в квартире могут нанести вред ребенку после прикосновения.
- Чугунные радиаторы в этой ситуации станут уязвимыми к механическим повреждениям и хрупкими, алюминиевые экземпляры способны выйти из строя.
- Пластиковые трубы, используемые в разводке помещения, не рассчитаны на очень высокие температуры и могут потерять эстетичный внешний вид.
Чтобы предотвратить подобные эксцессы в теплотрассу подбирают элеватор, в многоквартирных домах невозможно обойтись без подобной детали.
Устройство узла учета
Состоит узел учета тепловой энергии из следующих основных элементов:
- Запорная арматура.
- Теплосчетчик.
- Термопреобразователь.
- Грязевик.
- Расходомер.
- Термодатчик обратного трубопровода.
- Дополнительное оборудование.
Функции теплосчетчика
Прибор любого типа должен выполнять следующие задачи:
1. Автоматическое измерение:
- Продолжительности работы в зоне ошибок.
- Времени наработки при поданном напряжении питания.
- Избыточного давления циркулирующей в системе трубопроводов жидкости.
- Температуры воды в трубопроводах систем горячего, холодного водоснабжения и теплоснабжения.
- Расхода теплоносителя в трубопроводах горячего водоснабжения и теплоснабжения.
- Потребленного количества тепла.
- Объема теплоносителя, протекающего по трубопроводам.
- Тепловой потребляемой мощности.
- Разности температуры циркулирующей жидкости в подающем и обратном трубопроводе (трубопроводе холодного водоснабжения).
Запорная арматура и грязевик
Запорные устройства отсекают систему отопления дома от тепловой сети. Грязевик при этом обеспечивает защиту элементов теплосчетчика и тепловой сети от грязи, которая присутствует в теплоносителе.
Состав и расположение
Многоквартирные дома могут иметь разную конфигурацию. От этого УУТ могут быть непохожими по виду и устройству друг на друга.
Устанавливать такие узлы можно и для частного дома, если он подключен к центральной системе отопления
Однако основные элементы входят в состав каждого узла:
- Запорно-регулирующая арматура. Приспособления и устройства для регулирования и полного отключения различных узлов отопительной системы.
- Тепловой счётчик. Основной измерительный прибор, который может отличаться по конструкции, но обязан давать показания основных параметров подачи тепла.
- Грязевик. Место сбора мусора. Основная цель этого устройства — предотвратить попадание посторонних предметов и веществ в систему отопления.
- Расходомер. Прибор, который учитывает расход теплоносителя и помогает регулировать его подачу.
- Элеватор. Элеваторный узел отопления служит для регулирования температуры теплоносителя. В этом устройстве за счёт смешения горячего и остывшего теплоносителя (обратки) происходит регулировка до нормативных показателей.
- Термодатчик. Измерительный прибор для фиксации температуры теплоносителя при возврате из системы отопления.
- Вспомогательное оборудование. Многие центры контроля обеспечиваются дополнительными приборами и агрегатами. Современные технологии позволяют значительно расширить возможности контроля.
Основным требованием к расположению приборов и всех составляющих системы контроля является максимальная точность и эффективность. Поэтому есть определённые правила последовательности и места расположения основных узлов. Вот лишь некоторые из них:
- Размещать приборы учёта на границе раздела, максимально близко к задвижкам и регуляторам подачи теплоносителя.
- Запрет на оборудование дополнительных отведений трубопровода в обход датчиков.
- Термодатчик на обратке размещают перед задвижкой с внешней стороны.
- Размещать приборы так, чтобы был хороший визуальный доступ для снятия показаний приборов и их обслуживания.
Термопреобразователь
Данный прибор устанавливается после грязевика и запорной арматуры в наполненную маслом гильзу. Гильза либо посредством резьбового соединения закрепляется на трубопроводе, либо вваривается в него.
Термодатчик
Данное устройство монтируется на обратном трубопроводе совместно с запорной арматурой и расходомером. Такое расположение позволяет не только измерять температуру циркулирующей жидкости, но и ее расход на входе и выходе.
Расходомеры и термодатчики подключаются к теплосчетчикам, которые позволяют производить расчет потребленного тепла, хранение и архивацию данных, регистрацию параметров, а также их визуальное отображение.
Как правило, тепловычислитель размещается в отдельном шкафу со свободным доступом. Кроме того, в шкафу можно устанавливать дополнительные элементы: источник бесперебойного питания или модем. Дополнительные устройства позволяют обрабатывать и контролировать данные, которые передаются узлом учета дистанционно.
Порядок установки узла учета
Прежде чем установить узел учета тепловой энергии, важно провести обследование объекта и разработать проектную документацию. Специалисты, которые занимаются проектированием отопительных систем, производят все необходимые расчеты, осуществляют подбор контрольно-измерительных приборов, оборудования и подходящего теплового счетчика.
После разработки проектной документации, необходимо получить согласование от организации, которая занимается поставкой тепловой энергии. Этого требуют действующие правила учета тепловой энергии и нормы проектирования.
Только после согласования можно спокойно устанавливать тепловые узлы учета. Монтаж состоит из врезки запорных устройств, модулей в трубопроводы и электромонтажных работ. Работы по электромонтажу завершаются подключением к вычислителю датчиков, расходомеров и последующим запуском вычислителя для проведения учета энергии тепла.
После этого осуществляется наладка прибора учета тепловой энергии, заключающаяся в проверке работоспособности системы и программировании вычислителя, а затем производится сдача объекта согласующим сторонам на коммерческий учет, который выполняется специальной комиссией в лице теплоснабжающей компании. Стоит отметить, что такой узел учета должен функционировать некоторое время, которое у разных организаций колеблется от 72 часов до 7 дней.
Чтобы объединить несколько узлов учета в единую сеть диспетчеризации, потребуется организовать дистанционное снятие и мониторинг учета информации с теплосчетчиков.
Допуск к эксплуатации
При допуске теплового узла к эксплуатации проверяется соответствие заводского номера прибора учета, который указан в его паспорте и диапазона измерений установленных параметров теплосчетчика диапазону измеряемых показаний, а также наличие пломб и качество монтажа.
Эксплуатация теплового узла запрещена в следующих ситуациях:
- Наличие врезок в трубопроводы, которые не предусмотрены проектной документацией.
- Работа прибора учета за пределами норм точности.
- Присутствие механических повреждений на приборе и его элементах.
- Нарушение пломб на устройстве.
- Несанкционированное вмешательство в работу теплового узла.
Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.
Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.
Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.
10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров «Фотошопа» подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.
15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.
Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.
Тепловой счетчик
Теплосчетчик – это основной элемент, из которого должен состоять узел тепловой энергии. Его устанавливают на вводе тепла в отопительную систему в непосредственной близости к границе балансовой принадлежности тепловой сети.
При удаленном монтаже прибора учета от данной границы, тепловые сети дополнительно к показаниям по счетчику добавляют потери (для учета тепла, которое выделяется поверхностью трубопроводов на участке от границы балансового разделения до теплосчетчика).
Виды теплосчетчиков в зависимости от способа измерения
В настоящее время обширно применяются следующие виды тепловых счетчиков:
- Механического принципа действия или тахометрические. Наиболее распространенная модификация приборов учета тепла. Бывают крыльчатые или роторные (турбинные). Достаточно просты в применении и не требуют электрических затрат. Работают благодаря крыльчатке или ротору и возвратно-поступательному движению жидкости;
Важно! Механические теплосчетчики требовательны к теплоносителю, вода должна быть чистой. Прибор оборудуют дополнительным фильтрующим элементом, так как его загрязнение непосредственно влияет на точность показаний.
- Электромагнитные. Принцип работы базируется на взаимодействии с электрическими волнами теплоносителя. Из всех представленных категорий данные приборы учета являются самыми точными. Недостатком прибора является его применение в горизонтальных тепловых системах;
- Ультразвуковые. Измерение тепловой энергии происходит путем измерения длины сигнала ультразвука, проходящего через теплоноситель. Счетчики устанавливаются парно, напротив друг друга. Между собой также различаются недвижимый по: частотному, временному, корреляционному и допплеровскому принципу действия. Применяются в открытых и закрытых тепловых системах;
- Вихревого типа. Создают в жидкости вихревой поток, благодаря своему расположению на пути движения теплоносителя с последующей фиксацией формирования и исчезновения вихрей магнитного поля. Применяется в вертикальных и горизонтальных системах отопления.
Важно! Вихревые теплосчетчики требуют наличия прямых трубопроводов, так как качество измерений напрямую зависит от состава движимой горячей жидкости, ее скорости и присутствия в ней воздушных масс.
Порядок установки узла учета тепловой энергии
Работы по установке, наладке и пуску системы производятся в следующем порядке:
- Обследование помещения и определение объемов работ под конкретный дом;
- Разработка проектной документации с последующим принятием проекта;
- Монтажные работы с оборудованием (врезка и электромонтажные мероприятия);
- Пуско-наладочные работы (программирование и проверка работоспособности сети);
- Заключение договора с последующей постановкой на баланс теплообслуживающей компании.
Монтаж и установка узлов учета энергии – порядок действий
Монтаж узлов учета на объектах подразумевает два фронта работ: врезание тепломеханических деталей в трубы и проведение работ по электромонтажу.
Итогом всех действий является подключение датчиков и расходомеров к вычислителю. После этого производится запуск вычислительного блока. Следующим этапом является отладка всех подключенных модулей. Она проводится при помощи программной настройки вычислителя и последующего тестирования системы. Сдача узла производится после успешного прохождения проверки.
Порядок действий по установке узлов учета:
- Составление проектно-сметной документации на узел теплоучета
- Согласование проекта в компании-поставщике
- Оформление комплектации прибора
- Производство модулей узла по имеющимся чертежам
- Врезка модульных блоков в имеющиеся сети
- Производство работ по электромонтажу и отладке
- Сдача готового проекта заказчику
Обслуживание, ремонт и установка УУТЭ в квитанции — что это такое?
УУЭТ — расшифровывается, как Узел Учета Теплоэнергии и является технической системой, состоящей из измерительных приборов, устройств учета тепловой энергии, объема его потребления, устройств контроля и регистрации параметров теплоносителя. Этот термин определен в Постановлении Правительства от 18.11.2013 г. № 1034 «О коммерческом учете тепловой энергии, теплоносителя».
Но следует отметить, что установка узла учета тепловой энергии не является желанием жильцов дома, это обязанность, обусловленная нормами законодательства. Поэтому расходы на его установку ложатся на кошелек собственников квартир и отражаются в квитанции за коммунальные услуги.
Не всем жильцам понятно, зачем его ставить в многоквартирном доме, но коммунальщики уверяют, что в итоге выгода станет очевидной. И причин тому несколько:
- УУТЭ позволяет на конкретном доме учитывать расход потребляемого ресурса. При теплопотерях на магистрали по вине поставщика убытки не будут считаться с потребителя, а будут браться в расчет только фактические расходы.
- Появляется возможность контролировать качество поставляемого ресурса и его соответствие нормативам, выявлять утечки и потери.
- Прибор дает возможность фиксировать в период отключения горячего водоснабжения расходы только на холодную воду.
Сама установка УУТЭ складывается из следующих данных:
- стоимости всей системы приборов и устройств;
- монтажа оборудования.
Стоимость монтажа напрямую зависит от состояния трубопровода в доме. Врезка может потребовать их модернизации или удаления части имеющихся коммуникаций, чтобы произвести правильную установку. Это может значительно увеличить финансовую нагрузку на собственников квартир в доме и сумма в квитанции может отличаться в каждом из строений жилого фонда.
Советы и рекомендации по установке УУТЭ
Основной рекомендацией при монтаже узлов учета тепла являются требования, предъявляемые к человеческому фактору.
Смета на весь проект для конкретного сооружения, как и дальнейший монтаж оборудования, должны производиться специалистами, имеющими конкретные знания и навыки в данной сфере. Общедомовое имущество в данном случае прослужит намного дольше.
Техническое обслуживание
Процесс дальнейшей эксплуатации:
- Все приборы, как и квартирные ИПУ, проходят опломбировку.
- Любые вмешательства допускаются только с ведома снабжающей организации.
- Поддерживать работоспособность и выполнять настройку должны лица с соответствующей квалификацией.
Чтобы избежать лишних проблем, рекомендуется для обслуживания привлекать специализированные компании или теплоснабжающую организацию.
Как функционирует элеватор
Если говорить простыми словами, то элеватор в системе отопления – это водяной насос, не требующий подведения энергии извне. Благодаря этому, да еще простой конструкции и низкой стоимости, элемент нашел свое место практически во всех тепловых пунктах, что строились в советское время. Но для его надежной работы нужны определенные условия, о чем будет сказано ниже.
Чтобы понять устройство элеватора системы отопления, следует изучить схему, представленную выше на рисунке. Агрегат чем-то напоминает обычный тройник и устанавливается на подающем трубопроводе, своим боковым отводом он присоединяется к обратной магистрали. Только через простой тройник вода из сети проходила бы сразу в обратный трубопровод и прямо в систему отопления без снижения температуры, что недопустимо.
Стандартный элеватор состоит из подающей трубы (предкамеры) со встроенным соплом расчетного диаметра и смесительной камеры, куда подводится остывший теплоноситель из обратки. На выходе из узла патрубок расширяется, образуя диффузор. Агрегат действует следующим образом:
- теплоноситель из сети с высокой температурой направляется в сопло;
- при прохождении через отверстие малого диаметра скорость потока возрастает, из-за чего за соплом возникает зона разрежения;
- разрежение вызывает подсасывание воды из обратного трубопровода;
- потоки смешиваются в камере и выходят в систему отопления через диффузор.
Как происходит описанный процесс, наглядно показывает схема элеваторного узла, где все потоки обозначены разными цветами:
Непременное условие устойчивой работы узла заключается в том, чтобы величина перепада давления между подающей и обратной магистралью сети теплоснабжения было больше, чем гидравлическое сопротивление отопительной системы.
Наряду с явными преимуществами данный смесительный узел обладает одним существенным недостатком. Дело в том, что принцип работы элеватора отопления не позволяет регулировать температуру смеси на выходе. Ведь что для этого нужно? Изменять при необходимости количество перегретого теплоносителя из сети и подсасываемой воды из обратки. Например, чтобы температуру снизить, надо уменьшить расход на подаче и увеличить поступление теплоносителя через перемычку. Этого можно добиться только уменьшением диаметра сопла, что невозможно.
Проблему качественного регулирования помогают решить элеваторы с электроприводом. В них посредством механического привода, вращаемого электродвигателем, увеличивается или уменьшается диаметр сопла. Это реализовано за счет дроссельной иглы конусной формы, входящей в сопло изнутри на определенное расстояние. Ниже изображена схема элеватора отопления с возможностью управления температурой смеси:
1 – сопло; 2 – дроссельная игла; 3 – корпус исполнительного механизма с направляющими; 4 – вал с зубчатым приводом.
Примечание. Вал привода может снабжаться как рукояткой для управления вручную, так и электродвигателем, включаемым дистанционно.
Кто устанавливает и обслуживает тепловой узел в квартирных домах?
В многоквартирных зданиях работает центральное отопление (ТС) и горячее водоснабжение (ГВС), магистральный трубопровод для подачи которых располагается в подвалах, оснащая его запорной арматурой. Последняя позволяет отключать внутридомовую систему подачи отопления от внешней сети.
Сам тепловой узел оснащается грязевиками, запорной арматурой, контрольно-измерительными приборами и имеет в конструкции такое устройство, как элеватор. Из них постоянного обслуживания требует, как правило, грязевик, которые представляет собой стальную трубу диаметром Ду=159-200мм и необходим для сбора грязи, поступающей из магистрального трубопровода для защиты трубопроводов и отопительных приборов от загрязнения.
Установка термо-узла, его обслуживание, в том числе очистка – работа слесарей обслуживающих жилой дом, выполняя требования организации, предоставляющей жилищно-коммунальные услуги.
Встраиваемая электрическая установка
Налоговые органы не имеют права классифицировать основные средства в соответствующей группе. Эта классификация должна выполняться самим экономическим оператором с помощью уполномоченного статистического органа. Постоянно подключенная электрическая установка не может рассматриваться как отдельный основной актив. Это увеличивает начальное значение здания.
Осветительные приборы, бра и измерительные приборы
Если электрическая установка не встроена в конструкцию здания, ее можно рассматривать как автономный детектор. Для отдельных фондов постоянные налоговые органы получают свет внутри и снаружи зданий, которые не постоянно связаны с зданием. Их можно отсоединить, не повреждая их конструкции или здания.
- Отсутствие подключения к электрической сети.
- Эффективность работы.
- Простота конструкции.
Недостатки:
- Невозможность регулирования температуры на выходе.
- Требуется точный расчет и подбор.
- Между обратным и подающим трубопроводом необходимо соблюдать перепад давлений.
Конструкция
Элеватор состоит из:
- Камеры разрежения;
- Сопла;
- Струйного элеватора.
Среди теплотехников есть понятие как обвязка узла элеватора. Оно заключается в установке необходимой запорной арматуры, манометров и термометров. Все это в сборе и является узлом.
Тепловой распределительный пункт здания
Теплотехники рекомендуют применять один из трех температурных режимов работы котелен. Эти режимы вначале были рассчитаны теоретически и прошли многолетнее практическое применение. Они обеспечивают передачу тепла с минимальными потерями на значительные расстояния с максимальной эффективностью.
Тепловые режимы котелен можно обозначить как соотношение температуры подачи к температуре «обратки»:
- 150/70 – температура подачи 150 градусов, а температура «обратки» 70 градусов.
- 130/70- температура воды 130 градусов, температура «обратки» 70 градусов;
- 95/70 – температура воды 95 градусов, температура «обратки» — 70 градусов.
В реальных условиях режим выбирается для каждого конкретного региона, исходя из величины зимней температуры воздуха. Следует отметить, что применять для отопления помещений высокие температуры, особенно 150 и 130 градусов нельзя, чтобы избежать ожогов и серьезных последствий при разгерметизации.
Температура воды превышает точку кипения, и она не кипит в трубопроводах благодаря высокому давлению. Значит нужно снизить температуру и давление и обеспечить необходимый отбор тепла для конкретного здания. Эта задача возложена на элеваторный узел системы отопления – специальное теплотехническое оборудование, расположенное в тепловом распределительном пункте.
Определение значения теплового узла
Элеватором называется энергонезависимое самостоятельное устройство, которое выполняет функции водоструйного насосного оборудования. Тепловой узел понижает давление, температуру теплоносителя, подмешивая охлажденную воду из системы отопления.
Оборудование способно передавать теплоноситель, нагретый до максимально высоких температур, что выгодно с экономической точки зрения. Тонна воды, прогретая до +150 С, обладает тепловой энергией намного большей, чем тонна теплоносителя с температурой всего в +90 С.
Основные элементы элеватора
Основными составляющими устройства являются:
- Струйный элеватор
- Сопло
- Камера разрежения
Элеваторный узел отопления состоит из запорной арматуры, контрольных термометров, манометров. Его еще называют «обвязкой элеватора».
Новые технические идеи и изобретения стремительно внедряются в нашу жизнь. Теплофикация не является исключением.
На смену привычным элеваторным узлам приходят устройства, которые осуществляют регулировку теплоносителя в автоматическом режиме.
Их стоимость значительно выше, но, в то же время, эти устройства более экономны и энергомичны. Кроме того, для их работы обязательно требуется электропитание. Иногда необходима его большая мощность. Надежность с одной стороны и технический прогресс — с другой.
Принципы работы и подробная схема теплового узла
Чтобы понять, как работает оборудование, надо разобраться с его устройством. Схема элеваторного узла отопления не отличается сложностью. Устройство представляет собой металлический тройник с соединительными фланцами на концах.
Конструктивные особенности такие:
- левый патрубок – это сопло, сужаемое к концу до расчетного диаметра;
- за соплом идет камера подмеса (смесительная) цилиндрической формы;
- нижний патрубок нужен для присоединения трубопровода обратной циркуляции воды;
- правый патрубок – это диффузор с расширением, транспортирующий горячий теплоноситель в сеть.
Несмотря на простое устройство элеватора теплового узла, принцип работы агрегата намного сложнее:
- Прогретый до высокой температуры теплоноситель перемещается через патрубок в сопло, затем под давлением скорость транспортировки повышается, и вода быстро перетекает через сопло в камеру. Эффект водоструйного насоса поддерживает заданную интенсивность течения теплоносителя в системе.
- При прохождении воды через камеру напор уменьшается, и струя проходит через диффузор, обеспечивая разрежение в камере подмеса. Затем под высоким давлением теплоноситель перемещает через перемычку жидкость, возвращенную из магистрали отопления. Давление создается эффектом эжекции за счет разряжения, которое поддерживает поток подаваемого теплоносителя.
- В камере подмеса температурный режим потоков уменьшается до +95 С, это оптимальный показатель для транспортировки по системе отопления дома.
Понимая, что такое тепловой узел в многоквартирном доме, принцип работы элеватора и его возможности, важно поддерживать рекомендуемый перепад показателей давления в трубопроводе подачи и обратки. Разница необходима для преодоления гидравлического сопротивления сети в доме и самого прибора
Интегрируется элеваторный узел системы отопления в сеть так:
- левый патрубок присоединяется к магистрали подачи;
- нижний – к трубам с обратной транспортировкой;
- отсекающие задвижки монтируются с обеих сторон, дополняются грязевым фильтром для предупреждения засорения узла.
Вся схема оснащается манометрами, счетчиками учета расхода тепла, термометрами. Для лучшего сопротивления потоков перемычка в трубопровод обратной подачи врезается под углом в 45 градусов.
Достоинства и недостатки тепловых узлов
Энергонезависимый элеватор отопления стоит недорого, не нуждается в подключении к сети питания, безупречно работает с теплоносителем любого вида. Эти свойства обеспечили востребованность оборудования в домах с центральным отоплением, куда подается теплоноситель высокой степени нагрева.
Недостатки применения:
- Поддержание перепада напора воды в трубопроводах обратного тока и подачи.
- Каждая магистраль требует конкретных расчетов и параметров теплового узла. При малейших изменениях температуры жидкости придется подстраивать отверстия форсунок, устанавливать новое сопло.
- Нет возможности плавно регулировать интенсивность и прогрев транспортируемого теплоносителя.
В продаже предлагаются узлы с регулируемым проходным сечением ручным или электрическим приводом шестеренчатой передачи, расположенной в предкамере. Но в этом случае устройство теряет энергонезависимость.
Преимущества элеватора
Многие потребители говорят, что схема элеватора отопления является нерациональной, и гораздо проще подавать пользователям тепловой носитель более низкой температуры. На самом же деле этот подход подразумевает увеличение диаметра центрального отопительного трубопровода для циркуляции более холодного теплоносителя, что подразумевает дополнительные затраты.
То есть, качественная схема узла отопления позволяет использовать с подающим объемом теплоносителя часть остывшей воды из обратки. Невзирая на то, что некоторые источники элеваторов относятся к устаревшим гидравлическим устройствам, по сути, они являются наиболее эффективными в эксплуатации. Существуют и более современные приборы, которые пришли на смену системам элеваторного узла.
Сюда относятся следующие виды устройств:
- смеситель, оборудованный трехходовой мембранной;
- пластинчатый теплообменник.
Модели на базе теплообменника
Существует еще одна разновидность теплового узла частного дома — на основе теплообменника. В таком случае к устройству присоединен специальный теплообменник, который разделяет жидкость из теплотрассы от жидкости в помещении. Подобная функция необходима для дополнительной подготовки теплоносителя с помощью различных присадок и фильтрующих устройств. Схема расширяет возможности в регулировке давления и температурного режима теплоносителя внутри здания. Таким образом затраты на отопление постройки существенно снижаются.
Для подмешивания воды с разной температурой необходимо использовать термостатические клапаны. Подобные системы нормально взаимодействуют с радиаторами из алюминия, но чтобы последние прослужили максимально долго, необходимо тщательно выбирать теплоноситель, отказываясь от низкокачественного сырья. Конечно же, уследить за качеством жидкости проблематично, поэтому лучше отказаться от этого материала, отдав предпочтение биметаллическим или чугунным радиаторам.
Схема подключения ГВС подразумевает использование теплообменника. Такой метод обеспечивает массу плюсов, включая:
- 1. Возможность регулирования температуры воды.
- 2. Возможность изменения давления горячего теплоносителя.
К сожалению, многие управляющие компании не следят за температурой теплоносителя, а иногда даже занижают ее на несколько градусов. Среднестатистический потребитель практически не заметит такие изменения, но в масштабах целого дома — это экономия внушительных сумм денежных средств.
Общие краткие сведения о системах теплоснабжения
Чтобы правильно понять важность элеваторного узла, наверное, необходимо для начала кратко рассмотреть, как же работают центральные системы теплоснабжения.
Источником тепловой энергии являются ТЭЦ или котельные, в которых осуществляется разогрев теплоносителя до нужной температуры за счёт использования того или иного вида топлива (уголь, нефтепродукты, природный газ и т.п.) Оттуда теплоноситель прокачивается по трубам к точкам потребления.
ТЭЦ или крупная котельная рассчитана на обеспечение теплом определенного района, порой – с очень немалой территорией. Системы трубопроводов получаются весьма протяжёнными и разветвленными. Как минимизировать потери тепла и равномерно распределить его по потребителям, так, чтобы, например, наиболее удаленные от ТЭЦ здания не испытывали недостаточности в нем? Это достигается тщательной термоизоляцией тепловых магистралей и поддержанием в них определенного теплового режима.
На практике используется несколько теоретически рассчитанных и практически проверенных температурных режимов функционирования котельных, которые обеспечивают и передачу тепла на значительные расстояния без существенных потерь, и максимальную эффективность, и экономичность работы котельного оборудования. Так, к примеру, применяются режимы 150/70, 130/70, 95/70 (температура воды в магистрали подачи / температура в «обратке»). Выбор конкретного режима зависит от климатического пояса региона и от конкретного уровня текущей зимней температуры воздуха.
Упрощенная схема подачи тепла от ТЭЦ (котельной) к потребителям
1 – Котельная или ТЭЦ.
2 – Потребители тепловой энергии.
3 – Магистраль подачи разогретого теплоносителя.
4 – Магистраль «обратки».
5 и 6 – Ответвления от магистралей к зданиям – потребителям.
7 – Внутридомовые тепловые распределительные узлы.
От магистралей подачи и «обратки» идут ответвления в каждое здание, подключенное к данной сети. Но вот здесь сразу возникают вопросы.
- Во-первых, разным объектам требуется различное количество тепла – не сравнить, к примеру, огромную жилую высотку и небольшое малоэтажное здание.
- Во-вторых, температура воды в магистрали не соответствует допустимым нормам для подачи непосредственно на теплообменные приборы. Как видно из приведенных режимов, температура очень часто даже превышает точку кипения, и вода поддерживается в жидком агрегатном состоянии только лишь за счет высокого давления и герметичности системы.
Использование столь критичных температур в отапливаемых помещениях – недопустимо. И дело не только в избыточности поступления тепловой энергии – это чрезвычайно опасно. Любое прикосновение к разогретым до такого уровня батареям вызовет сильный ожог тканей, а в случае даже небольшой разгерметизации теплоноситель мгновенно превращается в горячий пар, что может повлечь очень серьезные последствия.
Не все радиаторы отопления одинаковы. Дело не только и не столько в материале изготовления и внешнем виде. Они могут значительно различаться своими эксплуатационными характеристиками, адаптацией к той или иной системе отопления.
Таким образом, на локальном тепловом узле дома необходимо снизить температуру и давление до расчетных эксплуатационных уровней, обеспечив при этом требуемый отбор тепла, достаточный для нужд отопления конкретного здания. Эту роль выполняет специальное теплотехническое оборудование. Как уже говорилось, это могут быть современные автоматизированные комплексы, но очень часто отдается предпочтение проверенной схеме элеваторного узла.
Если заглянуть на тепловой распределительный пункт здания (чаще всего они располагаются в подвале, в точке входа магистральных тепловых сетей), то можно увидеть узел, в котором явно видна перемычка между трубами подачи и «обратки». Именно здесь и стоит сам элеватор, об устройстве и принципе работы будет рассказано ниже.
Устройство
Внешне этот элемент выглядит как своеобразная металлическая или чугунная конструкция с тремя отверстиями, на каждом из которых есть фланцы для подсоединения агрегата к системе, из чего состоит элеваторный узел, следует узнать подробнее. Внутреннее строение у меня вызвало намного больший интерес, изначально нужно разобрать составляющие по отдельности, выглядит это так:
- Корпус.
- Сопло.
- Смесительная камера.
- Подача.
- Обратная магистраль.
- Выход в систему.
На подаче можно обнаружить максимально высокое давление, при выходе из диффузора более низкое, а в обратной системе минимальное, подобное происходит и с температурой жидкости. Перемычка, находящаяся в вертикальном положении, врезается в корпус под 90 градусов.
Особенности элеваторных узлов
Элеваторные узлы лет 20 — 30 назад являлись основным видом арматуры, регулирующей давление и температурные параметры теплового носителя да входе отопительных контуров различных зданий и сооружений. В настоящее время их можно считать морально устаревшими, и они не столь популярны в силу приведенных ниже особенностей:
- Зависимость выходного напора от перепадов давления теплосети. Так как в простых элеваторных узлах нет обратной связи и каких-либо построечных регулировок, то чем выше давление на их входе, тем больше оно на выходе. В некоторых ситуациях расположенные рядом здания могут потреблять пиковое количество тепловой энергии (объем теплового носителя), что приводит к подсаживанию элеватора.
- Температура среды после элеватора напрямую связана с температурными параметрами теплоносителя, поступающего на его входной патрубок из теплосетей. Если вода на его входе не слишком горячая, то и на выходе ее температура будет пониженной, и наоборот.
- Корректное функционирование элеватора напрямую связано с качеством поступающей воды. При сильных загрязнениях узкое сопло (диаметр около 6 мм) может забиваться, что приведет к неправильной работе узла.
- Любые аварийные и критические ситуации в теплосетях оказывает непосредственное влияние на корректность функционирования элеваторного узла.
- Применение стандартного элеватора является экономически невыгодным, так как не позволяет оптимизировать энергозатраты из-за отсутствия каких-либо подстроек, связанных с температурными параметрами теплового носителя.
- Учитывая, что у элеватора отопления принцип работы основан на понижении давления, для его корректного функционирования необходим высокий напор рабочего тела на входе. Если входное давление слишком мало, выходного напора может не хватить для подачи отопительной жидкости на большие расстояния или высоты.
- Принцип работы элеваторного узла в системе отопления и режим его функционирования несовместимы с переменным потреблением тепловой энергии. То есть если в радиаторах квартир многоэтажного дома установлены термостатические клапаны (а такие регулировки присутствуют практически во всех современных зданиях), то объемы протекающего по контуру теплоносителя будут постоянно меняться при корректировке настроек. Соответственно из обратки в смесительный узел будут поступать разные объемы жидкости, что вызовет скачки температуры и давления на выходе элеватора. Иными словами, элеватор эффективен в коммунальных домах старой постройки с чугунными радиаторами без подстроек или встроенными в панели теплообменниками.
- Ограниченный диапазон применения. Система отопления с элеваторным узлом не может функционировать в высотных зданиях, если давление на его входе невелико. Также его функционирование неэффективно при изменении графика подачи тепла на теплостанциях.
- Если используют регулируемые элеваторные узлы, то при снижении давления на входе падает напор в линии обратки, и соответственно ее температура.
- Нет возможности оптимально подобрать параметры элеваторного узла под определенный отопительный контур — все выпускаемые номера рассчитаны только на несколько типовых диаметров трубопроводов.
Сущность элеваторного узла
Элеваторный узел системы отопления – особый функциональный механизм, который является частью отопительного оборудования дома. По сути он выполняет роль водоструйного или эжекционного насоса.
Благодаря своему устройству элеватор позволяет повышать давление в теплосистеме, повышая при этом объём теплоносителя (повышение количества воды получается из-за её большой температуры и такого же большого давления). Это значит, что вода в трубах нагревается до 150°С, не превращаясь при этом в пар из-за закрытого пространства. Кроме этого, в элеваторе генерируется повышенное давление. Все указанные условия, которые создаёт элеваторное устройство, способствуют последующей более эффективной подаче тепла в отопительные трубы.
После того, как 150-градусная вода подошла к месту её непосредственного использования включается элеватор. Он должен понизить температуру и давление воды, ведь в таком разогретом состоянии теплоноситель не может поступать в отопительные системы. В противном случае чугунные батареи, трубы при этом испортятся и при этом даже сохранится вероятность их разрыва, что может иметь печальные последствия. Даже если радиаторы не чугунные, а сделаны из другого металла, есть вероятность получить ожог.
Это интересно! Вода не обязательно нагревается до 150°С, есть также другие режимы работы– с входной температурой 130°С, 95°С (как вариант 90°С).
Принципиальная схема элеваторного узла
Элеватор отопления не сможет продуктивно функционировать без должной обвязки, хотя приспособление достаточно простое, и похоже на насос, который под определенным давлением подает жидкость, но некоторые нюансы в этом вопросе есть, буду разбирать точнее.
Максимально нагретая вода попадает во входной патрубок, и перемещается вперед за счет давления. Благодаря соплу создается эффект инжекции, что заставляет жидкость, попадая в приемную камеру создать зону разряжения.
Поскольку давление понижается, туда засасывает воду из патрубка, который, в свою очередь, подключен к обратному трубопроводу. Из-за этих манипуляций теплоноситель попадает в горловину элеватора и начинается смешивание горячего и холодного потока.
Нормализованная с учетом всех норм безопасности вода через диффузор возвращается в систему и распределяется по радиаторам, расположенным в квартирах, так выглядит схема элеваторного узла отопления.
Схема теплового узла
Регулировку подачи теплоносителя осуществляют узлы элеваторные отопления дома. Элеватор – основной элемент теплового узла, нуждается в обвязке. Регулировочное оборудование чувствительно к загрязнениям, поэтому в обвязку входят грязевые фильтры, которые подключаются к «подаче» и «обратке».
В обвязку элеватора входят:
- грязевые фильтры;
- манометры (на входе и выходе);
- термодатчики (термометры на входе элеватора, на выходе и на «обратке»);
- задвижки (для проведения профилактических или аварийных работ).
Это самый простой вариант схемы для регулировки температуры теплоносителя, но она часто используется как базовое устройство теплового узла. Базовый узел элеваторный отопления любых зданий и сооружений, обеспечивает регулировку температуры и давления теплоносителя в контуре.
Преимущества его применения для отопления больших объектов, домов и высоток:
- безотказность, благодаря простоте конструкции;
- низкая цена монтажа и комплектующих деталей;
- абсолютная энергонезависимость;
- существенная экономия потребления теплоносителя до 30%.
Но при наличии бесспорных преимуществ использования элеватора для систем отопления следует отметить и недостатки применения этого прибора:
- расчет делается индивидуально для каждой системы;
- нужен обязательный перепад давления в системе отопления объекта;
- если элеватор нерегулируемый, то невозможно изменить параметры контура отопления.
Разбор схемы
Как вы поняли, узел состоит из фильтров, элеватора, контрольно-измерительных приборов и арматуры. Если вы планируете самостоятельно заниматься установкой этой системы, то стоит разобраться со схемой. Подходящим примером будет многоэтажка, в подвальном помещении которой всегда стоит элеваторный узел.
На схеме элементы системы отмечены цифрами:
1, 2 – этими цифрами обозначены подающий и обратный трубопроводы, которые установлены в теплоцентрали.
3,4 – подающий и обратный трубопроводы, установленные в системе отопления постройки (в нашем случае это многоэтажный дом).
5 – элеватор.
6 – под этой цифрой обозначены фильтры грубой очистки, которые также известны как грязевики.
7 – термометры
8 – манометры.
В стандартный состав этой системы отопления входят приборы контроля, грязевики, элеваторы и задвижки. В зависимости от конструкции и назначения, в узел могут добавляться дополнительные элементы.
Интересно! Сегодня в многоэтажных и многоквартирных домах можно встретить элеваторные узлы, которые оснащены электроприводом. Такая модернизация нужна для того, чтобы регулировать диаметр сопла. За счет электрического привода можно корректировать тепловой носитель.
Стоит сказать, что с каждым годом коммунальные услуги дорожают, это касается и частных домов. В связи с этим производители систем снабжают их устройствами, направленными на сбережение энергии. К примеру, теперь в схеме могут присутствовать регуляторы расхода и давления, циркуляционные насосы, элементы защиты труб и очистки воды, а также автоматика, направленная на поддержание комфортного режима.
Также в современных системах может быть установлен узел учета тепловой энергии. Из названия можно понять, что он отвечает за учет потребления тепла в доме. Если это устройство отсутствует, то не будет видна экономия. Большинство владельцев частных домов и квартир стремятся поставить счетчики на электроэнергию и воду, ведь с ними платить приходится значительно меньше.
Размеры элеваторного узла
Элеваторы изготавливаются в нескольких типоразмерах, соответствующих величине и потребностям системы отопления дома или подъезда многоквартирного дома:
Таблица зависимости номера элеватора от его размера
Подбор элеватора производится по сочетанию различных параметров — температуры, давления в системе, пропускной способности трубопроводов, присоединительным размерам и т.п. Большинство приборов выбирается исходя из диаметра труб, питающих систему отопления. Важно обеспечить соответствие диаметра питающих трубопроводов и размеров патрубков элеватора, чтобы прибор не оказался своеобразной диафрагмой, снижающей пропускную способность и давление в системе. Кроме того, на эффективность работы влияет размер сопла, подлежащий тщательному расчёту. Формулы расчёта имеются в сети, но самостоятельно его производить, не имея опыта и подготовки, не рекомендуется. Проще всего использовать онлайн-калькулятор, который можно отыскать в сети Интернет. Полученный результат целесообразно проверить на другом калькуляторе, чтобы получить более корректный результат.
Принцип работы агрегата в системе отопления
Я считаю, что принцип работы элеватора отопления можно сравнить с водяным насосом, который функционирует без каких-либо ресурсов извне.
Конструкция достаточно простая и бюджетная, именно поэтому большинство тепловых пунктов используют этот элемент в системах многоквартирных домов. Но каждый агрегат должен эксплуатироваться надлежащим образом, без определенных условий перебоев в работе не избежать.
Элеватор отопления имеет три отверстия с фланцами для закрепления, одно из которых подключается к подающему трубопроводу, второе отвечает за подачу жидкости на радиаторы, а в третье поступает обратный поток. Для правильной работы сети необходимо, чтобы между подающим и обратным потоком перепад давления превышал гидравлическое сопротивление системы отопления.
Элеватор с автоматической регулировкой
Такой тип устройства я не считаю максимально практичным из-за его зависимости от внешних факторов, но устройство довольно современное и заслуживает внимания. Конструкция предполагает смену сечения сопла посредством регулировки автоматическим способом.
Как работает элеваторный узел, он связан со специально разработанным для этого процесса механизмом, который расположен внутри корпуса элеватора. Именно эта составляющая отвечает за передвижение дроссельной иглы вперед и назад, зависимо от температуры жидкости в системе.
Подвижный элемент в сопле воздействует на просвет, в результате чего изменяется подача теплоносителя и его расход. Изменения в проходимости жидкости не только регулируют температуру в трубах, но и скорость передвижения воды в системе отопления. Это обусловлено сменой коэффициента при смешивании холодного и горячего потока. Я рассказал вам, по какой схеме элеватора отопления происходит изменение температуры в магистральной трубе.
Не менее важным фактором стоит считать то, что используя незаменимый элемент, можно регулировать также давление в трубах и радиаторах квартир.
Устройство направляет поток, создавая изменения теплоносителя в контуре отопления. Конструкция приспособления предполагает циркуляцию жидкости, поэтому зачастую к ней идут такие удачные дополнения, как распределительные агрегаты. В многоквартирных домах подобные устройства необходимы лишь потому, что в них проживает сразу несколько потребителей.
За распределение воды отвечает коллектор или гребенка, после попадания в эту емкость теплоноситель из автоматического элеваторного узла уходит по комнатам жильцов через множество выходов. На напор в системе подобная манипуляция не влияет, он остается прежним.
Плюсы и минусы теплового узла
Элеваторный узел системы отопления имеет следующие преимущества:
- Приемлемая стоимость и простота конструкции делают элеватор востребованным, несмотря на его внушительный «возраст».
- Это энергонезависимое устройство не нуждается в электроснабжении для работы.
- Благодаря наличию элеватора отопления сечение магистрального трубопровода можно сделать меньше, что позволяет сэкономить на его устройстве.
Минусы этого приспособления заключаются в невозможности регулировки температуры теплоносителя. Однако этот недостаток можно нивелировать использованием приборов для регулировки диаметра сопла. В таком случае контроль над температурой осуществляется управлением скоростью потока, что сказывается на степени разрежения в смесительной камере.
Недостатки
Схема теплового узла и само приспособление вопреки всем своим положительным сторонам имеет минусы, к которым следует отнести следующее:
- Размеры составляющих устройства достаточно тяжело рассчитать, но если этого не сделать, то обеспечить максимальную продуктивность не получится.
- Обеспечивая перепад давления на двух магистралях, необходимо придерживаться показателя, не превышающего 2 Бар.
- Для регулирования необходимо оборудовать агрегат электрическим приводом.
Чтобы управлять температурой, потребуется изменять диаметр сопла, но не все модели приспособления оснащены такими устройствами, я считаю это главной проблемой в работе элеваторного узла системы отопления.
Основные неисправности элеваторного узла
Даже такое простое устройство, как элеваторный узел, может работать неправильно. Неисправности можно определить путем анализа показаний манометров в контрольных точках элеваторного узла:
- Неисправности часто вызываются засорением трубопроводов грязью и твердыми частичками в воде. Если наблюдается падение давления в системе отопления, которое до грязевика значительно выше, то эта неисправность вызвана засорение грязевика, который стоит в подающем трубопроводе. Грязь сбрасывается через спускные каналы грязевика, очищают сетки и внутренние поверхности устройства.
- Если скачет давление в системе отопления, то возможными причинами может быть коррозия или засорение сопла. Если произойдет разрушение сопла, то давление в расширительном баке отопления может превысить допустимое.
- Возможен случай, при котором растет давление в системе отопления, а манометры до и после грязевика в «обратке» показывают разные значения. В таком случае нужно чистить грязевик «обратки». Открываются сливные краны на нем, чистится сетка, и удаляются загрязнения изнутри.
- При изменении размеров сопла из-за коррозии происходит вертикальное разрегулирование контура отопления. Внизу батареи будут горячие, а на верхних этажах недостаточно нагретые. Замена сопла на сопло с расчетной величиной диаметра устраняет подобную неисправность.
Технические характеристики стандартных моделей
Заводские экземпляры имеют 7 типов конструкций, отличающихся по размеру, у каждой из них есть свой специальный номер. Чтобы удачно подобрать хороший вариант и избежать проблем при опрессовке, стоит учесть два параметра – это диаметр камеры смешивания и сопла.
Со второй составляющей дело обстоит проще, ее можно заменить при необходимости, ведь корпус является съемным. К таким действиям прибегают в 2 вариантах:
- Износ детали по истечении определенного времени (выработка об абразивные частицы).
- Изменения в коэффициенте смешивания, что необходимо для повышения или снижения температуры теплоносителя.
Я узнал интересный факт об эксплуатации элеваторного агрегата, зачастую в технических характеристиках не найти пункта, который знакомит покупателя с сечением сопла, диаметр рассчитывается отдельно. Основное внимание приковывается к смесительно-инжекционной камере, чтобы максимально точно вычислить размер под конкретную систему отопления.
Клапан трехходовой
При необходимости разделить поток теплоносителя между двумя потребителями применяется клапан трехходовой для отопления, который может работать в двух режимах:
постоянный режим;- переменный гидрорежим.
Трехходовой кран устанавливается в тех местах контура отопления, где может возникнуть необходимость разделить или полностью перекрыть поток воды. Материал крана – сталь, чугун или латунь. Внутри крана находится запорное устройство, которое может быть шаровым, цилиндрическим или конусным. Кран напоминает тройник и в зависимости от подключения трехходовой клапан на системе отопления может работать как смеситель. Пропорции смешивания можно менять в широких пределах.
Применяется шаровой кран в основном для:
- регулировки температуры теплых полов;
- регулировки температуры батарей;
- распределения теплоносителя на два направления.
Существуют два типа трехходовых кранов – запорные и регулировочные. В принципе они практически равнозначны, но запорными трехходовыми кранами труднее плавно регулировать температуру.
Требования к помещению
В подавляющем большинстве случаев смесительные узлы монтируются в подвале здания. Для выполнения своих функций необходимо учитывать характеристику помещения – сезонные перепады температуры и влажности.
Существует ряд требований к этим показателям, выполнение которых обязательно. В особенности это касается элеваторных узлов системы центрального отопления с установленными автоматическими сервоприводами:
- Температура в помещении не должна опускаться ниже 0°С;
- Для предотвращения появления конденсата на поверхности труб обустраивается система вытяжной вентиляции;
- Для электрических приборов обязательно монтируется отдельная щитовая. Рекомендуется предусмотреть источник автономного питания на случай аварийного отключения подачи электричества.
Однако по факту редко можно встретить следование этим правилам. В итоге даже для самого эффективного чертежа элеваторного узла его практическое исполнение может существенно отличаться. Именно поэтому появились альтернативные схемы для смешивания потоков теплоносителя.
В некоторых новых многоквартирных домах, подключаемых к центральному отоплению, не предусмотрена схема отопления с элеваторным узлом. Для его монтажа нужно обратиться в управляющую компанию.
Другие варианты тепловых узлов
Отталкиваясь от основного принципа работы элеваторного узла системы отопления, были разработаны альтернативные способы поддержания нужного уровня температуры в трубах для пользователей. Их отличие от традиционной схемы заключается в наличии сложной электронной системы управления.
Первое, на что обратили внимание разработчики этого узла – оптимальный расход горячей воды. Поэтому на входном патрубке обязательно устанавливается счетчик тепловой энергии. Он дает возможность не только увидеть объем поступившего в систему дома теплоносителя, но и может автоматически подсчитывать его стоимость и передавать данные в управляющую компанию.
Установленные насосы позволяют контролировать скорость прохождения теплоносителя по трубам. Это необходимо для уменьшения погрешности при смешивании потоков жидкости в сопле. Для этого на входную и обратную трубы монтируют температурные датчики. Если уровень нагрева воды меньше заданного — насос на обратной прекращает свою работу. Для увеличения объема горячего теплоносителя активируется соответствующее насосное оборудование.
Однако нужно учитывать и недостатки подобной системы:
- Зависимость от электропитания. Аварийный источник электричества может работать лишь незначительное время. Для защиты от перепада напряжения необходима установка конденсационного выпрямителя;
- При увеличении сложности системы повышается вероятность выхода ее из строя. Достаточно одному из датчиков выйти из строя — параметры оптимального смешивания изменятся.
Несмотря на эти факторы, популярность новых систем связана с их удобством эксплуатации и значительной экономии средств на отопление. Именно поэтому усовершенствованные элеваторные узлы для системы центрального отопления будут пользоваться спросом.
Что же касается первичных расходов на закупку оборудования и монтаж – эти капиталовложения возвращаются в виде сэкономленных средств на оплату отопления в течение 3-5 лет. Но при условии, что проектированием и установкой занимаются профессиональные и честные компании.
Как регулируют теплоноситель на выходе
Регуляция теплоносителя на выходе элеватора может обеспечиваться одни из двух методов:
- Подача жидкости посредством сопла меньшего диметра
- Установка ручных заслонок
Если теплоноситель поступает в квартиры через сопло определенного диаметра, его скорость движения по трубам значительно возрастает. Жидкость попадает во все стояки сравнительно быстро, обеспечивая равномерное распределение тепла по дому.
Когда сантехники решаются устанавливать металлические заслонки, которые настраиваются в ручную, добиться равномерного распределения теплоносителя крайне сложно. В случае неправильного регулирования в квартирах, которые располагаются на нижних этажах ближе к элеваторному узлу, будет значительно жарче, чем на верхних. Придется вызывать мастера и предпринимать определенные меры.
Как обнаружить неисправность элеватора
Самый простой способ убедиться в исправной работе элеваторного узла – сверить показатели температур на входе и выходе из него. Возможно развитие событий по одному сценарию:
- Показатели соответствуют норме – никаких действий предпринимать не нужно, так как оборудование работает нормально
- Если показатели примерно равны, значит элеватор засорен или необходимо уменьшить диаметр сопла
- Если показатели очень сильно разнятся, значит элеватор неисправен и требует более тщательного осмотра
Наибольшее число поломок связано с соплом. Если оно засорено, необходимо демонтировать данный элемент узла и прочистить. Со временем оно растачивается под действием примесей в жидкости и требует замены.
Проверить на исправность элеваторный узел необходимо в случаях, когда квартиры на последних этажах тепла недополучают, внизу наоборот его с переизбытком. Любые неисправности ликвидировать самостоятельно не рекомендуется, следует обратиться к специалистам.
Перед очередным отопительным сезоном придется проверять элеватор на работоспособность. Особое внимание уделяют грязевику, который собирает весь скопившийся в теплоносителе ссор. Разница давлении на входе и выходе должна практически отсутствовать, иначе можно говорить о его засорении.
Основные неполадки
К сожалению, даже такое незамысловатое устройство, как элеваторный узел, подвергается различным сбоям и неполадкам. Для определения неисправности необходимо проанализировать показания манометров в контрольных точках.
Одной из ключевых причин повреждения элеваторного узла является большое скопление мусора в трубопроводах. Зачастую этим мусором является грязь и твердые частички в воде. При резком снижении давления в отопительной системе чуть дальше грязевика нужно провести очистку этого резервуара. Грязь сбрасывают с помощью спускных каналов, после чего обслуживают сетки и внутренние поверхности конструкции.
При скачках давления необходимо проверить систему на наличие коррозийных процессов или мусора. Также проблему может вызывать разрушение сопла, в результате чего уровень давления станет слишком высоким.
Еще в работе элеваторных узлов встречаются такие явления, при которых давление начинает расти невероятными темпами, а манометры до и после грязевика отображают одинаковое значение. Если это так, необходимо провести комплексную очистку грязевика обратного контура. Для этого следует открыть краны, очистить сетку и избавиться от всех загрязнений внутри.
Если размеры сопла изменились из-за коррозийных процессов, возможно, произошло вертикальное разрегулирование отопительного контура. В таком случае нижние радиаторы будут прогреваться достаточно хорошо, а верхние останутся холодными. Для устранения неисправности нужно заменить сопло.
Как обслуживать
Работа элеватора основана на действии физических законов, поэтому каких-либо движущихся или вращающихся деталей его конструкция не предусматривает. Даже в более сложных конструкциях с изменяющимся размером сопла перемещается специальная игла, увеличивающая или уменьшающая проход для теплоносителя (по принципу действия пульверизатора), не имеющая высокой скорости перемещения. Поэтому весь уход за устройством заключается в своевременной очистке от загрязнений, удалении грязи, понемногу набивающейся из-за низкого качества теплоносителя. Периодической замене подлежат сопла, которые испытывают нагрузки при воздействии с потоком горячей воды и первыми выходят из строя. Проверка диаметра и состояния сопла производится ежегодно, замена осуществляется при наступлении необходимости — сильной изношенности детали, чрезмерном увеличении или уменьшении пропускной способности. Также необходимо следить за герметичностью фланцевых соединений, вовремя менять прокладки и сальники.
Сферы применения и предназначение
Разобравшись со схемой теплоузла отопления, можно переходить непосредственно к монтажным работам. Как известно, такие установки зачастую используются в многоквартирных помещениях, которые подключены к общей коммунальной отопительной системе.
Тепловые узлы предназначаются для таких задач:
- 1. Проверки и изменения рабочих свойств теплоносителя и теплового потенциала.
- 2. Мониторинга текущего состояния систем отопления.
- 3. Мониторинга и записи основных показателей теплоносителя — текущей температуры, давления и объема.
- 4. Проведения денежных расчетов и составления оптимального плана расходов энергии.
Обустраивая отопительную систему в помещении, нужно понимать, что центральное отопление требует определенных затрат. Если речь идет о многоквартирном здании, то все расходы разделяются на жильцов. Но иногда они бывают неоправданными из-за недобросовестного отношения управляющих компаний и неправильной установки деталей системы.
И чтобы предотвратить существенный финансовый ущерб, важно заранее установить высокоэффективный тепловой узел частного дома, который будет автоматически регулировать любые изменения и подбирать оптимальное соотношение температуры теплоносителя. Только грамотная проверка оборудования и правильное обслуживание позволят обустроить эффективную систему отопления, которая прослужит долгие годы без сбоев.
Виды элеваторных узлов отопления
Эта схема отопления элеваторного узла не раскрывает механизм регулировки температурного режима. А это является основным из способов оптимизации расхода тепловой энергии в зависимости от внешних факторов — температуры на улице, степени теплоизоляции дома и так далее. Для этого в сопло устанавливается специальный стержень конусной формы. Зубчатые передачи обеспечивают его соединение с задвижкой. Регулируя положение стержня, изменяется пропускная способность сопла.
В зависимости от установленного оборудования различают два вида регулируемых элеваторных узлов отопления:
- Ручной способ. Вращение задвижки выполняется традиционным методом. При этом ответственный работник должен следить за показаниями манометров и термометров системы;
- Автоматический. На штифт задвижки устанавливается сервопривод, который соединяется с датчиками температуры и давления. В зависимости от установленных показателей выполняются движения стержня.
Типичный чертеж элеваторного узла должен включать в себя не только требуемые элементы, эксплуатационные характеристики системы. А для этого нужно сделать расчет параметров. Подобная работа выполняется только специализированными проектными организациями, так как требует учета всех факторов.
Установка регулируемого элеваторного узла для отопления в сочетании со счетчиком расхода тепловой энергии позволят сэкономить до 30% расхода горячего теплоносителя.
Виды воздушного отопления
В воздушной системе, как и в водяной, теплоноситель может приводиться в движение двумя способами:
За счет конвекции (гравитационная система)
Здесь в качестве двигателя используется только сила Архимеда, заставляющая нагретый воздух, плотность которого уменьшается, всплывать, то есть двигаться вверх.
Для этого достаточно расположить теплогенератор ниже самого низкого потребителя – и все, воздух будет следовать куда нужно сам по себе.
У этого способа есть три недостатка:
мощность конвективного потока не слишком велика, поэтому установить фильтр не получится; по той же причине легкий сквозняк может нарушить подачу теплого воздуха.
Воздух приходится нагревать достаточно сильно, иначе архимедова сила не сможет преодолеть аэродинамическое сопротивление воздуховодов.
При помощи вентилятора (принудительная подача)
Такая система сквозняков не боится, а теплогенератор в ней можно размещать на любом уровне. К тому же воздух можно подогревать лишь слегка, что очень удобно в период межсезонья. Сечение воздуховодов можно уменьшить, так как их аэродинамическое сопротивление теперь не имеет значения.
За все эти достоинства придется платить как в прямом смысле (вентилятор и приводящая его в действие электроэнергия стоят денег), так и в переносном – система становится энергозависимой.
Кроме того, воздушное отопление может быть прямоточным и рециркуляционным.
Однотрубная отопительная система
Однотрубное теплоснабжение многоквартирного дома имеет массу недостатков, главным среди которых являются значительные потери тепла в процессе транспортировки горячей воды. В данном контуре теплоноситель подают снизу вверх, после чего он попадает в батареи, отдает тепло и возвращается назад в ту же самую трубу. К конечным потребителям, проживающим на верхних этажах, прежде горячая вода доходит в еле теплом состоянии.
Бывают случаи, когда однотрубную систему еще дополнительно упрощают, стараясь увеличить температуру теплоносителя в радиаторах. Для этого батарею врезают напрямую в трубу. В итоге, кажется, что радиатор является ее продолжением. Но от подобного подключения больше тепла получают только первые пользователи системы, а к последним потребителям вода доходит практически холодной (прочитайте также: «Система поквартирного отопления — характеристика «). Кроме этого однотрубное теплоснабжение многоквартирного дома делает невозможной регулировку радиаторов – после уменьшения подачи теплоносителя в отдельной батарее также снижается водоток по всей длине трубы.
Еще одним недостатком такого теплоснабжения является невозможность замены радиатора в отопительный сезон без слива воды со всей системы. В подобных случаях необходима установка перемычек, благодаря чему появляется возможность отключить батарею, а теплоноситель направить по ним.
Таким образом, с одной стороны в результате установки контура однотрубной отопительной системы получается экономия, а с другой – возникают серьезные проблемы относительно распределения тепла по квартирам. В них жильцы зимой мерзнут.
Двухтрубная отопительная система
Открытая и закрытая система отопления многоквартирного дома может быть двухтрубной (см. фото), позволяющей сохранять температуру теплоносителя в радиаторах, расположенных в квартирах на всех этажах. Устройство двухтрубного контура подразумевает, что остывшая в радиаторе горячая вода не попадает назад в ту же трубу. Она поступает в так называемую «обратку» или в возвратный канал. Читайте также: «Элеваторный узел системы отопления: что это такое «.
Не имеет значения, каким образом подключена батарея – к трубе стояка или лежака, теплоноситель имеет постоянную температуру на всем пути его транспортировки по трубам подачи.
Одним из важных преимуществ двухтрубных водяных контуров считается регулировка системы отопления многоквартирного дома на уровне каждой отдельной батареи путем установки на ней кранов с термостатом (прочитайте также: «Регулировка системы отопления — подробности из практики «). В результате в квартире обеспечивается автоматическое поддержание нужного температурного режима. В двухтрубном контуре доступно использование радиаторов отопления как с подключением нижним, так и с боковым. Также можно применять разное движение теплоносителя — тупиковое и попутное.
Горячее водоснабжение в системах отопления
ГВС в многоэтажных домах обычно является централизованным, при этом вода нагревается в котельных. Подключают горячее водоснабжение от контуров отопления, причем и от однотрубных, и от двухтрубных. Температура в кране с горячей водой по утрам бывает теплой или холодной, что зависит от количества магистральных труб. Если имеется однотрубное теплоснабжение многоквартирного дома высотой в 5 этажей, то при открытии горячего крана сначала в течение полминуты из него пойдет холодная вода.
Причина кроется в том, что ночью редко кто из жильцов включает кран с горячим водоснабжением, и теплоноситель в трубах остывает. В результате наблюдается перерасход ненужной остывшей воды, поскольку она сливается напрямую в канализацию.
В отличие от однотрубной системы в двухтрубном варианте циркуляция горячей воды происходит непрерывно, поэтому вышеописанной проблемы с ГВС там не возникает. Правда, в некоторых домах через систему горячего водоснабжения закольцовывают стояк с трубами – полотенцесушителями, которые даже в летнюю жару горячие.
Многих потребители интересует проблема с ГВС после того, как завершился отопительный сезон. Иногда горячая вода пропадает на длительное время. Дело в том, что коммунальные службы обязаны соблюдать правила отопления многоквартирных домов, согласно которым необходимо производить постотопительные испытания систем теплоснабжения (прочитайте также: «Акт гидравлического испытания системы отопления и трубопроводов «). Такая работа не выполняется быстро, особенно если обнаружатся повреждения, которые нужно устранить.
В летний период испытаниям подвергается вся система, обеспечивающая центральное отопление в многоквартирном доме. Коммунальные службы проводят текущие и капитальные ремонтные работы на теплотрассе, отключая при этом на ней отдельные участки. Накануне предстоящего отопительного сезона отремонтированная тепловая магистраль повторно подвергается испытаниям (подробнее: «Правила подготовки к отопительному сезону жилого дома «).
Некоторые особенности элеватора отопления
При рассмотрении вопроса о том, что такое элеваторный узел, стоит отдельно остановиться на особенностях его обустройства для обогрева дома.
При проектировании отопительной системы особое внимание нужно обращать на отношение сопротивления устройства к напору, создающемуся внутри трубы, которая подаёт воду. Оптимально, если это соотношение будет 1 к 7. Также важна разница давлений между подающим и обратным контуром. Необходимо стремиться к тому, чтобы эти показатели совпадали, тогда система считается полностью работоспособной. Допускается отклонение, но не более, чем на 0,5 кгс/см3.
Регулируемые устройства
Практика использования элеваторов отопления показывает, что применение регулируемых устройств больше нужно для зарубежных реалий: российские холодные зимы обычно требуют хорошего, стабильного обогрева жилых помещений и постоянно изменять температуру теплоносителя не требуется.
Также регулирующиеся элеваторы находят своё применение для обогрева нежилых помещений: если снизить температуру на ночь, когда клиентов и посетителей нет, можно добиться экономии до 30%. Регуляция теплоносителя с помощью такого элеватора отопления осуществляется с помощью специального дополнительного реле, оснащённого электроприводом.
Гребёнка
Когда на отапливаемом объекте, то есть в доме несколько этажей, требуется установить специальный распределитель, подающий тепло каждому отдельному объекту или в каждое помещение. Для этого используют специальное дополнительное оборудование – гребёнку (второе название – коллектор).
Сущность работы этого оборудования следующая: из элеваторного выхода вытекает готовый к обогреву теплоноситель, попадая в коллектор. После этого гребёнка распределяет воду по потребителям с одинаковым напором. При этом не происходит остановки работы всей системы, а взаимное влияние её ответвлений исключается. К тому же давление в батареях соответствует давлению на выходе элеватора.
Дополнительные элементы теплосистемы
Повышенный интерес к вопросу, что такое элеватор в системе отопления, в последнее время возник не спроста. Дело в постоянно повышающихся ценах на услуги жилищно-коммунального хозяйства. В таких условиях владельцы частных домов задумываются о получении экономии и нормальной температуры воздуха в зимний период.
Это можно осуществить, если использовать дополнительные элементы, снижающие излишнее потребление энергии:
- циркуляционные насосы;
- защитные элементы для труб;
- системы очистки воды;
- различные автоматические устройства, направленные на контроль за комфортным режимом нагрева теплоносителя.
Трёхходовой клапан
О том, что такое элеваторный узел отопления, вам уже известно, но есть некоторые разновидности этого устройства, которые стоит рассмотреть. Так, для распределения тепла между 2-мя пользователями или полного перекрывания потока используют специальный трёхходовой клапан. Элеваторное приспособление имеет такие режимы функционирования:
- переменный гидрорежим;
- постоянный режим.
Чтобы кран был достаточно крепким для выполнения своих задач, его изготавливают из чугуна, латуни или стали. Внутри расположено цилиндрическое, шаровое или конусное запорное устройство. Такой механизм может работать в качестве смесителя, при этом есть возможность регулировать и менять пропорции смешивания холодной и горячей воды в широком диапазоне.
В большинстве случаев шаровый кран используется для регулирования температуры тёплого пола, отопительных батарей или разделения отопительного потока на два направления. Различают два типа трёхходового крана – запорный и регулировочный. Как это понятно из названия, регулировочный кран специально предназначен для осуществления комфортной регулировки, а вот запорные трёхходовые краны не позволят плавно менять температуру.
Нагревание воды
Элеватор в отопительной системе нужен для снижения температуры и вместе с ней давления теплоносителя, но бывают исключения. Так, в холодных регионах можно встретить конструкции с элеватором, который может наоборот нагревать воду. Запуск такого устройства осуществляется, когда происходит смешивание уже остывшей воды с перегретым теплоносителем, поступающем из соответствующей входной трубы. Такой элеваторный узел повышает эффективность всей домовой отопительной системы.
Расчет и подбор элеватора
Руководствуясь специальными формулами в первую очередь, нужно рассчитать диаметр камеры смешивания, затем выбрать необходимый номер элеватора отопления, после чего определяется размер сопла. Непонятные килокалории стоит сразу перевести в распространенные единицы, зачастую их преобразуют в Бар.
Узкая часть сопла элеватора исчисляется в миллиметрах, для этого процесса также есть формула. Расчеты для меня небыли сложными, хотя при взгляде на блокнот для записей все операции казались огромными. Вычислив напор на выходе с центральной магистрали, стоит применить альтернативную формулу, чтобы выявить диаметр. Но хочу обратить внимание, что результат будет выражаться в сантиметрах.
Проведение расчетов и подбор нужной модели элеватора
Допустим, что температура в подающей трубе тепловой централи – 135, а в обратной – 70 °С. Планируется поддерживать в системе отопления дома температуру в 85 °С, на выходе – 70 °С. Для качественного обогрева всех помещений необходима тепловая мощность в 80 кВт. По таблице определено, что коэффициент сопротивления равен «1».
Подставляем эти значения в соответствующие строки калькулятора, и сразу же получаем необходимые результаты:
В итоге имеем данные для подбора нужной модели элеватора и условия для его корректной работы. Так, получена требуемая производительность системы – количество теплоносителя, прокачиваемого в единицу времени, минимальный напор водяного столба. И самые основные величины – это диаметры сопла элеватора и его горловины (смесительной камеры).
Диаметр сопла принято округлять до сотых долей миллиметра в меньшую сторону ( в данном случае – 4,4 мм). Минимальное значение диаметра должно быть 3 мм – в противном случае сопло просто будет быстро забиваться.
Калькулятор позволяет и «поиграть» значениями, то есть посмотреть, как они будут изменяться при изменении исходных параметров. Например, если температура в теплоцентрали понижена, скажем, до 110 градусов, то это повлечет и другие параметры узла.
Изменение любого исходного параметра сразу дает и изменение результатов вычислений
Как видно, диаметр сопла элеватора уже составляет 7,2 мм.
Это дает возможность выбора устройства с наиболее приемлемыми параметрами, с определенным диапазоном регулировок, или же комплекта сменных сопел для конкретной модели.
Имея рассчитанные данные, уже можно обратиться к таблицам предприятий-изготовителей подобного оборудования для выбора требуемого варианта исполнения.
Обычно в этих таблицах, помимо рассчитанных величин, приводятся и другие параметры изделия – его габариты, размеры фланцев, масса и пр.
Для примера – водоструйные стальные элеваторы серии 40с10бк:
Основные линейные параметры струйного элеватора
Фланцы: 1 – на входе, 1—1 – на врезке трубы из «обратки», 1—2 – на выходе.
2 – входной патрубок.
3 – съемное сопло.
4 – приемная камера.
5 – смесительная горловина.
7 – диффузор.
Основные параметры сведены в таблицу – для удобства выбора:
dc | dг | D | D1 | D2 | l | L1 | L | |||
1 | 3 | 15 | 110 | 125 | 125 | 90 | 110 | 425 | 9,1 | 0,5-1 |
2 | 4 | 20 | 110 | 125 | 125 | 90 | 110 | 425 | 9,5 | 1-2 |
3 | 5 | 25 | 125 | 160 | 160 | 135 | 155 | 626 | 16,0 | 1-3 |
4 | 5 | 30 | 125 | 160 | 160 | 135 | 155 | 626 | 15,0 | 3-5 |
5 | 5 | 35 | 125 | 160 | 160 | 135 | 155 | 626 | 14,5 | 5-10 |
6 | 10 | 47 | 160 | 180 | 180 | 180 | 175 | 720 | 25 | 10-15 |
7 | 10 | 59 | 160 | 180 | 180 | 180 | 175 | 720 | 34 | 15-25 |
Расчет и подбор элеватора по номеру
Сразу уточним порядок действий: первым делом рассчитывается диаметр смешивающей камеры и выбирается подходящий номер элеватора, затем определяется размер рабочего сопла. Диаметр инжекционной камеры (в сантиметрах) вычисляется по формуле:
Участвующий в формуле показатель Gпр – это реальный расход теплоносителя в системе многоквартирного дома с учетом ее гидравлического сопротивления. Величина рассчитывается так:
- Q – количество теплоты, расходуемое на обогрев здания, ккал/ч;
- Тсм – температура смеси на выходе из элеваторного тройника;
- Т2о – температура воды в обратной линии;
- h – сопротивление всей разводки отопления вместе с радиаторами, выраженное в метрах водного столба.
Справка. Чтобы вставить в формулу непонятные килокалории, нужно знакомые ватты умножить на коэффициент 0.86. Метры водного столба преобразуются в более распространенные единицы: 10.2 м вод. ст. = 1 Бар.
Пример подбора номера элеватора. Мы выяснили, что реальный расход Gпр составит 10 тонн смешанной воды за 1 час. Тогда диаметр смесительной камеры равен 0.874 √10 = 2.76 см. Логично взять смеситель №4 с камерой 30 мм.
Теперь выясняем диаметр узкой части сопла (в миллиметрах) по следующей формуле:
- Dr – определенный ранее размер инжекторной камеры, см;
- u – коэффициент смешивания;
- Gпр – наш расход готового теплоносителя на подаче в систему.
Хотя внешне формула кажется громоздкой, но в действительности расчеты не слишком сложные. Остается неизвестным один параметр – коэффициент инжекции, вычисляемый так:
Все обозначения из данной формулы мы расшифровали, кроме параметра Т1 – температуры горячей воды на входе в элеватор. Если предположить, что ее величина составляет 150 градусов, а температура подачи и обратки 90 и 70 °С соответственно, искомый размер Dc выйдет 8.5 мм (при расходе 10 т/ч воды).
Когда известна величина напора Нр на входе в элеватор со стороны централи, можно воспользоваться альтернативной формулой определения диаметра:
Замечание. Результат вычисления по последней формуле выражается в сантиметрах.
Ремонт и замена деталей элеватора
Несмотря на то, что элеватор отопления является долговечным механизмом, всё-таки его детали иногда могут требовать замены. Например, сопло нужно менять, когда его диаметр увеличивается вследствие износа, который происходит из-за трения твёрдых частиц, попадающихся в воде-теплоносителе.
Также сопло меняют, когда оказывается надо повысить/понизить температуру воды, подающуюся в отопительную систему дома.
Иногда для изменения параметров теплоносителя без замены деталей на элеватор в системе отопления устанавливают задвижки (ручные заслонки), однако это не очень помогает проблеме. Дело в том, что при таком ручном, даже кустарном способе регулировки не удастся достичь равномерного распределения воды по всей системе отопления.
Зависимая схема с двухходовым клапаном и насосами в обратном трубопроводе
От его характеристик во многом зависит регулирование систем отопления и ГВС, а также эффективность использования тепловой энергии. На эффективность работы напрямую влияют колебания гидравлического режима в тепловых сетях. Помимо того, современные проекты предусматривают обустройство удаленного доступа к управлению тепловыми пунктами. На сегодняшний день популярностью пользуются устройства, с электрическим приводом регулировки сопла, благодаря чему появляется возможность автоматического изменения расхода теплоносителя в системе отопления многоквартирных домов. При монтаже автоматизированного теплового пункта можно пользоваться пофасадным регулированием, когда регулировка одной стороны МКД не зависит от другой. Подпитка отопительной системы происходит с помощью соответствующего насосного оборудования из обратного трубопровода тепловых сетей. Отопительная система также является замкнутым контуром, по которому происходит движение теплоносителя с помощью циркуляционных насосов от теплового пункта к потребителям и обратно. Затем теплоноситель направляется в обратный трубопровод и по магистральной сети поступает обратно для повторного использования на теплогенерирующее предприятие. Предназначен механизм для того, чтобы дроссельная игла можно двигать в продольном направлении. Она меняет просвет сопла и в результате меняется расход теплоносителя. Тепловой пункт с погодозависимым регулированием
Схемы подключения элеватного узла системы отопления
Процессы подогрева воды для систем горячего водоснабжения (ГВС) и отопления между собой некоторым образом взаимосвязаны.
Из-за того, что температура воды в ГВС при любых условиях должна поддерживаться в пределах 60 – 65 градусов, при плюсовых температурах наружного воздуха в элеватор может поступать более горячий теплоноситель, чем требуется.
При этом имеет место перерасход тепла на уровне 5% – 13%. Во избежание этого явления применяют три схемы подключения элеваторного узла:
- с регулятором расхода воды;
- с регулируемой насадкой;
- с насосом регулирующим.
С регулятором расхода воды
При выполнении данного условия удается избежать поэтажной разрегулировки, которая имеет место в однотрубных системах в случае уменьшения расхода теплоносителя.
Однако, схема «элеватор + регулятор расхода» не в состоянии поддержать температуру после данного устройства на приемлемом уровне при отклонениях от нормального температурного графика.
С регулируемым соплом
Площадь поперечного сечения выходного отверстия насадки регулируется вводимой в него иглой. При этом увеличивается коэффициент смешивания и, соответственно, падает температура теплоносителя после элеватора.
Недостатком данной схемы является то, что при введении иглы в отверстие конуса увеличивается гидросопротивление последнего, вследствие чего расход теплоносителя, а соответственно и количество поставляемого тепла, уменьшается.
С регулирующим насосом
Насос монтируется на линии смешения элеваторного узла либо параллельно ей. В дополнение к нему монтируются регуляторы расхода теплоносителя и его температуры. Данное решение является весьма эффективным, поскольку оно позволяет:
- регулировать температуру теплоносителя при любой температуре наружного воздуха, а не только при плюсовой;
- поддерживать циркуляцию теплоносителя во внутренней сети при остановке внешней.
К недостаткам схемы можно отнести высокую стоимость, сложность и увеличение эксплуатационных расходов за счет энергоснабжения насоса.
Классификация систем теплоснабжения по способу организации систем отопления
По способу организации систем отопления в МКД системы теплоснабжения подразделяются на:
· Зависимые;
· Независимы.
Зависимые системы теплоснабжения – системы, в которых вода нагревается и поставляется в систему отопления и ГВС напрямую, то есть в радиаторах отопления и в кранах – одна и таже.
Независимые системы теплоснабжения – системы, в которых теплоноситель в тепловых сетях отдает тепло внутренней системе отопления многоквартирного дома через пластинчатый теплообменник.
Классификация систем теплоснабжения по способу организации ГВС (горячего водоснабжения)
В такой классификации системы теплоснабжения подразделяются на:
· Закрытые;
· Открытые.
Закрытые системы теплоснабжения – вода на горячее водоснабжение забирается из водопровода и нагревается через теплообменник сетевой водой.
В открытой системе теплоснабжения вода на ГВС забирается непосредственно из тепловой сети.
Как работает тепловой пункт с элеваторным узлом смешения
Элеваторные узлы смешения устанавливают в тепловых пунктах зданий, которые подключены к тепловой сети работающей в режиме с качественным регулированием на «перегретой» воде.
Качественное регулирование предполагает изменение температуры воды поступающей в систему отопления в зависимости от температуры наружного воздуха, при постоянном расходе воды циркулирующей в ней.
«Перегретой» вода считается, если она поступает из тепловой сети с температурой, превышающей необходимую для подачи в систему отопления.
Например, тепловая сеть может работать по графику 150/70, 130/70 или 110/70, а система отопления рассчитана на график 95/70. Температурный график 150/70 предполагает, что при расчётной температуре наружного воздуха (для Киева это -22°С) температура на вводе тепловых сетей в дом должна быть равной 150°C, а уйти в тепловую сеть должна с температурой 70°C, при этом в дом рассчитанный на график 95/70 эта вода должна попасть с температурой 95°C.
Элеваторный узел смешивает поток воды из подачи тепловой сети с температурой 150°C и поток воды вышедший из системы отопления с температурой 70°C, — в результате смешения на выходе из элеватора получается поток с температурой 95°C, который подаётся в систему отопления.
Как происходит смешение
В камере смешения элеваторного узла расположен конфузор «сопло / конус» разгоняющий поток перегретой воды. При повышении скорости потока давление в нём понижается (это свойство описано законом Бернулли) на столько, что становится несколько ниже давления в обратном трубопроводе. Разница давлений между камерой смешения и обратным трубопроводом приводит к перетеканию теплоносителя через перемычку «сапог элеватора» из обрата в подачу.
В камере смешения образуется смесь двух потоков с уже требуемой температурой, но давлением ниже давления обратного трубопровода. Смесь поступает в диффузор элеватора, в котором скорость потока понижается, а давление повышается над давлением обратного трубопровода. Повышение давления составляет не более 1,5 м.вод.ст, что и накладывает на элеваторные узлы ограничения в применении для систем отопления с высоким гидравлическим сопротивлением.
Недостатки элеваторных узлов смешения
1 Не совместим с автоматическими регуляторами, поэтому нормативно запрещена их совместная установка.
2 Создаёт располагаемый напор на вводе в систему отопления не более 1,5м.вод.ст., что исключает установку элеваторных тепловых пунктов в зданиях системы отопления которых оборудованы радиаторными термостатическими клапанами.
3 Элеваторный узел обладает постоянным коэффициентом смешения, что не позволяет подать в систему отопления теплоноситель необходимой температуры, при недогреве в тепловой сети.
4 Слишком высокая чувствительность к располагаемому напору на вводе тепловой сети. Снижение располагаемого напора относительно расчётного значения ведёт к снижению объёмного расхода воды циркулирующего в системе отопления, что в свою очередь приводит к разбалансировке системы и останове дальних стояков/ветвей.
5 Для работы элеватора разница давлений между подающим и обратным трубопроводом должна превышать 15 м.вод.ст.
Где установлены тепловые пункты с элеваторными узлами?
Практически все системы отопления введённые в эксплуатацию до 2000 года оборудованы тепловыми пунктами с элеваторными узлами.
Где можно применять элеваторные ИТП?
В настоящее время для всех проектируемых и реконструируемых жилых и административных зданий, обязательно применение автоматического регулирования в тепловом пункте. Применение же элеваторных узлов совместно с автоматическими регуляторами запрещено нормативно.
Элеваторные узлы могут устанавливаться лишь на объектах где нет необходимости в автоматическом управлении системой отопления, располагаемый напор (разница давлений между подающим и обратным трубопроводом) на вводе стабилен и превышает 15 м.вод.ст, для работы подключённой системы отопления достаточно перепада давлений между подачей и обратом в 1,5м.вод.ст, а система отопления работает с постоянным расходом и не оборудована автоматическими регуляторами.
ГВС от индивидуального теплового пункта
Наиболее простой и распространенной является схема с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения (рис. 10). Они присоединены к той же тепловой сети, что и системы отопления зданий. Вода из наружной водопроводной сети подается в подогреватель ГВС. В нем она нагревается сетевой водой, поступающей от источника тепла.
Охлажденная сетевая вода возвращается к источнику тепла. После подогревателя горячего водоснабжения нагретая водопроводная вода поступает в систему ГВС. Если приборы в этой системе закрыты (к примеру, в ночное время), то горячая вода по циркуляционному трубопроводу снова подается в теплообменник ГВС.
Кроме того, применяется двухступенчатая система подогрева воды в ГВС. В ней в зимний период холодная водопроводная вода сначала подогревается в теплообменнике первой ступени (с 5 до 30˚С) теплоносителем из обратного трубопровода системы отопления, а затем для окончательного догрева воды до необходимой температуры (60˚С) используется вода из подающего трубопровода внешней сети. Идея состоит в том, чтобы использовать для нагрева бросовую тепловую энергию обратной линии от системы отопления. При этом сокращается расход сетевой воды на подогрев воды в ГВС. В летний период нагрев происходит по одноступенчатой схеме.
Для многоэтажного высотного (более 20 этажей) жилищного строительства в основном применяются схемы с независимым присоединением системы отопления к тепловой сети и параллельным подключением ГВС (рис. 11). Данное решение позволяет разделить системы отопления и ГВС здания на несколько независимых гидравлических зон, когда один ИТП находится в подвальном помещении и обеспечивает работу нижней части здания, например, с 1 по 12 этаж, а на техническом этаже здания располагается точно такой же тепловой пункт для 13 – 24 этажей. В этом случае отопление и ГВС легче регулируются в случае изменения тепловой нагрузки, а также обладают меньшей инерционностью с точки зрения гидравлического режима и балансировки.
Монтаж элеватора в систему
Располагается это приспособление чаще всего в подвале дома, но прежде чем начинать манипуляции связанные с установкой, помещение проверяется на такие нюансы как:
- Отсутствие понижения температуры ниже 0 градусов по Цельсию.
- Комната должна быть крытой.
- Наличие вытяжной вентиляции, так как после образования на трубах конденсата агрегат быстро выйдет из строя.
Модели со встроенными автоматическими механизмами нуждаются в бесперебойной подаче электричества, поэтому без установки независимого источника питания такое оборудование будет небезопасным.
При отключении подачи важного для работы ресурса процесс регулировки температуры не должен останавливаться, в противном случае произойдет масса неприятных моментов, а чтобы избежать перепада напряжения, необходима установка конденсационного выпрямителя.
Элеваторная установка с регулируемым соплом
С помощью новейших моделей элеваторов, оснащенных автоматикой, можно существенно экономить тепло. Это достигается путем регулирования температуры теплоносителя в зоне его выхода. Для достижения этой цели можно понижать температуру в квартирах ночью либо в дневное время, когда большинство людей находится на работе, учебе и пр.
Экономичный элеваторный узел отличается от обычного варианта наличием регулируемого сопла. Эти детали могут иметь различную конструкцию и уровень регулировки. Коэффициент смешения у аппарата с регулируемым соплом изменяется в пределах от 2 до 6. Как показала практика, этого вполне достаточно для отопительной системы жилого здания.
Стоимость оборудования с автоматической регулировкой значительно выше, чем цена обычных элеваторов. Но они более экономичны, функциональны и эффективны.
С конструктивной стороны в него включается:
- Программируемый процессор;
- Как минимум 2 термопары – на вводном и реверсивном трубоводах;
- Расходометры величины потраченного носителя;
Итак, для качественной работоспособности оборудования обязательной операцией считается обустройство спецфильтра. Принцип работы данного прибора сделан на прохождении особенного ультразвукового оповещения через поток носителя. Скорость передачи оповещения непосредственно связана с темпом продвижения жидкости.
Тем, кто ставит данное оснащение, следует знать условия его использования:
- Неимение на стенках трубопровода напластований;
- Неимение в инфраструктуре воздуха;
- Наибольшая степень чистоты круговращающей жидкости;
- Непрерывность давления;
Присутствие вышеперечисленных факторов снабдит результативное функционирование датчика, который станет показывать недеформированный итог.
Проверка состояния работы элеваторного узла
Неисправности можно выявить достаточно легко, нужно проанализировать показания манометров, установленных в разных контрольных точках.
Зачастую к эксцессам в работе приводят обильные засорения мелкими абразивными частицами, это выражается в падении давления по сравнению с прежними показателями. Скачки вызываются из-за возникновения коррозийных отложений или некорректной работы сопла.
Периодическая чистка грязевиков оградит элеваторный узел от множества проблем и неприятностей, чтобы определить некоторые неисправности потребуется проверка всех составляющих агрегата.
Просматривать также необходимо сетки при открытии сливных кранов, а при появлении коррозии лучше сразу заменить сопло для элеватора новым экземпляром, чтобы избежать вертикального разрегулирования контура системы.
Видео по теме
Возможные неисправности и ремонт
Невзирая на надежность оборудования, в некоторых случаях элеваторный отопительный узел может давать сбои. Горячий теплоноситель и повышенное давление быстро находят уязвимые участки и провоцируют выход из строя этого устройства. Это неизбежно происходит, если отдельные элементы имеют некачественную сборку, расчет размера сопла произведен неправильно, а также из-за появления засоров.
Шум в отопительном трубопроводе. Элеваторный узел отопления во время своей работы может создавать шум. Если это отмечается, это значит, на выходе сопла во время эксплуатации появились неровности или трещины.
Причина образования этих дефектов заключается в перекосах сопла, которые вызваны подачей горячей воды под высоким давлением. Это может случиться, если чрезмерный напор не дросселируется расходным регулятором.
Неверный температурный режим
Качественную работу отопительного элеватора можно поставить под сомнение, если температура на входном и выходном контуре значительно отличается от температурного графика. Вероятней всего, причиной для этого является завышенный размер сопла.
Не соответствие температуры
Качественную работу элеватора можно поставить под сомнение и тогда, когда температура на входе и выходе слишком различается с температурным графиком. Скорее всего, причиной тому завышенный диаметр сопла.
Неправильный расход теплоносителя
Неисправный дроссель может привести к изменению расхода теплоносителя в отличие от проектного показателя.
Это нарушение можно с легкостью определить за счет изменения температуры в подающей и обратной трубе. Проблему можно решить с помощью ремонта расходного регулятора.
Неисправные части узла
Если схема подключения системы отопления к наружной магистрали независима, то причину некачественной работы элеватора могут вызвать неисправные водонагревательные элементы, циркуляционные насосы, защитная и запорная арматура, различные утечки в оборудовании и трубах, выход из строя регуляторов.
К главным причинам, которые негативно влияют на принцип работы и схему насосного оборудования, относится разрушение эластичных мембран в соединениях валов электрического двигателя и насоса, износ подшипников и выход из строя посадочных участков под них, появление трещин и неровностей на корпусе, протекание сальников. Все вышеперечисленные поломки можно устранить только с помощью ремонта.
Некачественная работа водонагревателей может наблюдаться, если нарушена герметичность трубопровода, произошло слипание или разрушение трубного узла. Решить проблему можно только с помощью замены труб.
Засоры и загрязнения
Засоры являются одной из самых частых причин некачественного теплоснабжения. Их появление обусловлено попаданием грязи в отопительную систему, если грязевые фильтры не справляются со своей задачей. Увеличить проблему могут и наросты коррозий внутри трубопровода.
Уровень загрязнения фильтров можно узнать по данным манометров, которые установлены возле фильтра и за ним. Сильный перепад давления сможет подтвердить или опровергнуть предположение об уровне загрязненности. Для очистки фильтров необходимо вывести грязь через спускные клапаны, которые находятся внизу корпуса.
Любые неисправности работы в системе отопительного оборудования и труб необходимо исправить незамедлительно!
Любые замечания, которые не влияют на работу системы отопления, в непременном порядке должны быть зарегистрированы в специальной документации, ее необходимо включить в план капитальных или текущих работ по ремонту оборудования. Устранение неисправностей необходимо производить в летнее время перед сезоном отопления.
Как происходит процесс теплоснабжения высотного дома
В каждом многоквартирном здании имеется система центрального отопления, которая состоит из следующих элементов:
- источник;
- теплосеть;
- потребитель.
В качестве источников тепловой энергии выступают котельные и ТЭЦ.
Из котельных к домам горячая вода направляется сразу и требует понижения температуры, иначе теплооборудование дома будет испорчено. В ТЭЦ же она преобразуется в пар для получения электроэнергии, затем этот пар используется для нагрева теплоносителя, поступающего в теплосеть здания.
Что такое ИТП в жилом доме?
Индивидуальный тепловой пункт (ИТП) – это устройство, предназначенное для транспортировки тепловой энергии от тепловой сети (ТЭЦ, ЦТП, котельной) к внутридомовым системам: отопление, ГВС – горячее водоснабжение, вентиляция. Располагается, как правило, в подвальном или техническом помещении дома.
Понятие о тепловом пункте
Экономичность использования и уровня подачи тепла к потребителю напрямую зависит от правильности функционирования оборудования.
По сути, тепловой пункт представляет собой юридическую границу, что само по себе предполагает обустройство его набором контрольно-измерительной техники. Благодаря такой внутренней начинке определение взаимной ответственности сторон становится более доступным. Но прежде чем разобраться с этим, необходимо понять, как функционируют тепловые схемы тепловых узлов и для чего их читать.
Оборудование для ИТП
Чаще всего в состав ИТП входят:
- теплообменники (осуществляют передачу тепла);
- запорная и регулирующая арматура;
- насосы;
- контрольно-измерительные приборы;
- контроллеры;
- щиты электроуправления;
Как ИТП экономит деньги?
Экономить в масштабе всего здания на сокращении потребления тепла крайне выгодно, особенно в российских условиях. К первоочередным мерам, связанным с организацией теплоснабжения многоквартирного дома, относятся:
Сам по себе учет не является методом снижения теплопотребления. Но как показывает практика, установка таких приборов позволяет получить значительный экономический эффект. Очень часто энергоснабжающие компании завышают расчетные значения тепловых нагрузок или списывают на потребителя дополнительные издержки и расходы (утечки из труб, естественное понижение температуры теплоностителя на участках теплотрасс).
Замена узла системы отопления на современный позволяет регулировать подачу теплоты в систему отопления (вентиляции) в зависимости от температуры наружного воздуха с возможностью суточной коррекции и коррекции для выходных и праздничных дней в автоматическом режиме.
Реконструкция индивидуального теплового пункта с переходом на закрытую систему теплоснабжения здания позволяет обеспечить экономию благодаря регулировке параметров подачи теплоносителя в местную систему отопления (особенно в отопительный сезон за счет исключения перетопов 2-3 кВт/куб.м в год).
Стоимость внедрения ИТП включает в себя:
- 1.Проектирование разделовТепломеханические решения(ТМР)Автоматизация тепломеханических решенийУзел учета тепловой энергии
- 2.Стоимость оборудования и материалов зависит от производителя, количества систем, мощности ИТП и рассчитывается по спецификации
- 3.Монтаж + ПНРСантехнические работыРаботы по автоматизации и электроснабжениюПусконаладочные работы (сдача в эксплуатацию)
Место схемы в проектировании
Проектируя схему теплового узла отопления в жилом микрорайоне, при условии, что система теплоснабжения закрытая, уделите особое внимание выбору схемы соединения подогревателей горячего водоснабжения с сетью. Выбранный проект будет определять расчетные расходы теплоносителей, функции и режимы регулирования, прочее.
Выбор схемы теплового узла отопления в первую очередь определяется установленным тепловым режимом сети. Если сеть функционирует по отопительному графику, то подбор чертежа производится исходя из технико-экономического расчета. В таком случае параллельную и смешанную схемы тепловых узлов отопления сравнивают.
Как оборудовать тепловой пункт
Цифрами здесь обозначены следующие узлы и элементы:
- 1 — трехходовый кран;
- 2 — задвижка;
- 3 — пробковый кран;
- 4, 12 — грязевики;
- 5 — обратный клапан;
- 6 — дроссельная шайба;
- 7 — V-штуцер для термометра;
- 8 — термометр;
- 9 — манометр;
- 10 — элеватор;
- 11 — тепломер;
- 13 — водомер;
- 14 — регулятор расхода воды;
- 15 — регулятор подпара;
- 16 — вентили;
- 17 — обводная линия.
Двухконтурный тепловой пункт
В этом случае теплоносители двух контуров системы не смешиваются. Для передачи тепла от одного контура другому используется теплообменник, обычно пластинчатый. Схема двухконтурного теплового пункта приведена ниже.
Пластинчатый теплообменник – это устройство, состоящее из ряда полых пластин, по одним из которых прокачивается нагревающая жидкость, а по другим – нагреваемая. У них очень высокий коэффициент полезного действия, они надежны и неприхотливы. Количество отбираемого тепла регулируется изменением числа взаимодействующих друг с другом пластин, поэтому забор охлажденной воды из обратной магистрали не требуется.
Немного о недостатках
Несмотря на то, что тепловой узел имеет много преимуществ, есть у него и один существенный недостаток. Дело в том, то элеватором невозможно регулировать температуру выходящего теплоносителя. Если измерение температуры воды в обратном трубопроводе показывает, что она слишком горячая, необходимо будет ее понизить. Осуществить такую задачу можно только путем уменьшения диаметра сопла, однако, это не всегда возможно ввиду конструкционных особенностей.
Иногда тепловой узел оборудуют электроприводом, с помощью которого удается подкорректировать диаметр сопла. Он приводит в движение основную деталь конструкции – дроссельную иголку в виде конуса. Эта игла перемещается на заданное расстояние в отверстие по внутреннему сечению сопла. Глубина перемещения позволяет изменять диаметр сопла и тем самым контролировать температуру теплоносителя.
На валу может быть установлен как привод ручного типа в виде рукоятки, так и электрический дистанционно управляемый двигатель.
Стоит отметить, что установка такого своеобразного регулятора температуры позволяет модернизировать общую систему отопления с тепловым узлом без существенных финансовых вливаний.
Вероятные неполадки
Как правило, большинство неполадок в элеваторном узле возникает по следующим причинам:
- образование засора в оборудовании;
- изменения в диаметре сопла в результате эксплуатации оборудования – увеличение сечения усложняет регулировку температуры;
- засоры в грязевиках;
- выход из строя запорной арматуры;
- поломки регуляторов.
В большинстве случаев выяснить причину неполадок достаточно просто, поскольку они сразу отражаются на температуре воды в контуре. Если перепады и отклонения температуры от нормативов незначительны, что, вероятно, имеет место зазор или же сечение сопла несколько увеличилось.
Перепад в температурных показателях более 5 ℃ свидетельствует о наличии проблемы, решить которые могут только специалисты после проведения диагностики.
Если в результате окисления от постоянного контакта с водой или непроизвольного сверления возрастает сечение сопла, нарушается балансировка всей системы. Такой изъян нужно как можно быстрее исправить.
Стоит отметить, что в целях экономии финансов и использования отопления более эффективно, на тепловых узлах могут устанавливать электросчетчики. А приборы учета горячей воды и тепла дают возможность дополнительно снизить расходы на коммунальные платежи.
Что такое «теплосеть» и «теплоузел»
Сеть отопления дома представляет собой совокупность трубопроводов, которые обеспечивают теплом каждое жилое помещение. Это сложная система, которая состоит из двух теплопроводов: горячего и остывшего.
Тепловой узел – система теплооборудования; место, где труба гвс сливается с системой отопления здания. Тут происходит распределение и учет тепла.
В список выполняемых задач входят:
- контроль за состоянием источника тепла;
- контроль состояния трубопроводов воды и тепла;
- регистрация данных с аппаратов учета.
Типы теплоузлов
В многоэтажных домах используется тепловые пункты двух типов.
Одноконтурный предусматривает прямое подключение к трубам горячего водоснабжения, то есть теплопроводы соединяются при помощи элеватора. В высотных зданиях тепловая сеть довольно разветвленная, но большая часть оборудования располагается в подвальном помещении.
Важно! Схема двухконтурного узла отопления представляет собой систему из двух теплопроводов, контактирующих между собой посредством теплообменника.
Далее более подробно мы рассмотрим принцип работы одноконтурного теплового узла. Из-за своего устройства, а именно наличия элеватора, и низкой стоимости используется чаще всего. Компаниям, которые занимаются установкой теплооборудования и теплоузлов, выгоднее использовать устаревающие и не требующие тщательного внимания элеваторные узлы.
Какие бывают виды систем отопления многоквартирного дома
В зависимости от монтажа теплогенератора или местоположения котельной:
- Автономная система в квартире, где котел отопления монтируется в отдельном помещении или на кухне. Затраты на покупку котла, радиаторов и соответствующих материалов для разводки труб возвращаются быстро, так как такую автономную систему можно регулировать, исходя из собственных соображений относительно температурного режима в доме. Кроме того, индивидуальный трубопровод не теряет тепло, а наоборот – помогает отапливать помещения, так как проложен по квартире или по дому. Индивидуальный котел не нужно приспосабливать под реконструкцию централизованного отопления – один раз составленная и внедренная схема отопления будет работать всю жизнь. И, наконец, уже рабочую схему можно дополнить параллельно или последовательно включаемыми контурами, например, «теплым полом»;
- Вариант индивидуального отопления, который рассчитан на обслуживание всего многоквартирного дома или целого жилого комплекса – мини-котельная. В качестве примера можно привести старые котельные, обслуживающие квартал, или новые комплексы для одного или нескольких домов на разных источниках энергии – от газа и электричества до солнечных батарей и термальных источников;
- Централизованная схема отопления в многоэтажном доме – самое распространенное до сих пор рабочее решение проблемы.
Схемы отопления в зависимости от параметров рабочей жидкости:
- Отопление на обычной воде, в трубах которого теплоноситель не нагревается выше 65-700C. Это разработка из области низкопотенциальных систем, но чаще всего работают старые схемы с температурой рабочей жидкости, достигающей 80-1050C;
- Отопление паровое, где в трубах перемещается не горячая вода, а пар под давлением. Такие системы уходят в прошлое, и сегодня практически не используются при доставке тепла и обогреве любых типов многоквартирных домов.
Исходя из схемы трубной разводки:
- Самая распространенная — однотрубная система отопления многоэтажного дома, где и трубы подачи, и трубы обратки – это одна нитка теплотрассы. Такую схему до сих пор можно встретить в «хрущевках» и «сталинках», но на практике у нее есть большой недостаток: последовательно включенные в схему батареи или радиаторы не обеспечивают равномерного переноса тепла – каждый следующий обогревательный прибор будет немного холоднее, а последний радиатор в трубопроводе будет самым холодным. Для хотя бы примерно одинакового распределения тепла по помещениям каждый следующий в схеме радиатор необходимо оснащать бо́льшим числом секций. Кроме того, в однотрубной схеме отопления в пятиэтажном доме нельзя использовать радиаторы, не соответствующие расчетным параметрам, и приборы для регулировки отдачи тепла – клапаны и т.д. регулирования;
- Схема «Ленинградка» — более совершенное решение, но по той же однотрубной схеме. В этой схеме есть байпас (трубная перемычка), которая может подключать или отключать дополнительные обогревательные приборы, тем самым регулируя теплоотдачу в помещении;
- Более совершенная двухтрубная система отопления в многоквартирном доме начала свое существование со строительства зданий по проекту так называемой «брежневки» — панельного дома. Подача и обратка в такой схеме работают раздельно, поэтому температура рабочей жидкости на входах и выходах квартир 9 этажного дома всегда одинакова, как и в радиаторах или батареях. Еще один плюс – возможность монтажа на каждом обогревательном приборе регулирующего автоматического или ручного клапана;
- Лучевая (коллекторная) схема – последняя разработка для нетипового жилья. Все обогревательные приборы включены параллельно, а с учетом того, что это — закрытая система оо в многоквартирном доме, трубную разводку можно сделать скрытой. При реализации лучевой схемы все регулировочные устройства могут ограничивать или увеличивать подачу тепла дозировано.
Тепловой вычислитель
Практически в каждом доме уже стоит специальный прибор, именуемый тепловым вычислителем. Его задача посчитать, сколько тепла забрал Ваш дом. К сожалению, в силу исторических причин, когда все у нас был общее, а стало быть ничье, мы не привыкли считать расходы на отопление. А тем временем, сегодня отопление — это самая дорогая графа расходов в платежках. Причем из-за того, что исторически отопление в нашей стране никто не считал — эта сфера теперь самая взяткоемкая и крайне неэффективная. И чтобы как-то ситуацию исправить, каждый, кого интересует, что за цифры им выставляют в коммунальных платежках обязан запомнить и понять главную формулу в ЖКХ:
Именно, по этой школьной формуле тепловой счетчик рассчитывает Вам стоимость отопления: m — это масса теплоносителя, которая прошла через Ваш дом за 1 час, dT — это разница температур между подачей и обраткой. Т.е. на входе например 80 градусов, теплоноситель пройдя через батареи отопления дома остывает до 50 градусов — dT равна 30 градусам. Перемножив массу теплоносителя на разницу температур, мы получаем ту самую Гигакалорию. В каждом регионе устанавливается своя цена на 1 Гигакалорию, например в моем Владимире она равна 1987 рублей 40 копеек. Полученная за месяц Q, умножается на тариф, дальше делится на общую жилую площадь дома, и мы получаем стоимость отопления в расчете на 1 квадратный метр. Ну а сколькими квадратными метрами Вы владеете, столько собственно говоря Вы и обязаны заплатить. Вот такая довольно простая схема, о которой многие в нашей стране даже не подозревают, включая к всеобщему удивлению даже тех, кот этим самым ЖКХ и занимается (как показала моя практика).
Только понимая, как работает тепловой счетчик и из чего формируется цена за отопление можно заниматься вопросами энергосбережения. А как показывает формула, экономить можно либо на разнице температур, либо на массе теплоносителя, пропускаемого через дом. Тут надо сделать оговорку, просто так, взять и пустить подачу в обратку нельзя, если дом совсем не забирает тепла, и разница температур подачи и обратки меньше 3 градусов, такой тепловой счетчик снимается с учета и дому назначается оплата по нормативу. Эта особенность тепловой сети города, которую мы касаться сейчас не будем.
Спускаемся в подвал
Ну а теперь мы подошли к самому интересному. Большинство современных тепловых вычислителей — это весьма современные устройства, возможности которых совершенно не используются, в виду того, что домами заведуют сантехники Васи из далекого прошлого и бабушки из ТСЖ. Я призываю всех айтишников не полениться и спуститься в подвал Вашего дома, и посмотреть на этот весьма интересный вычислительный прибор. Например, в моем доме оказался тепловычислитель Термотроник ТВ7:
Данный прибор обладает достаточно большими возможностями, такими как подключение через Ethernet, USB, RS-232, но самое главное в нем есть картридер SD карт. Достаточно просто вставить в него SD карточку, и он автоматически запишет всю историю показаний — давление, температуру, объем теплоносителя и прочие характеристики, необходимые для расчета стоимости отопления. Кстати, в моем случае еще оказалось, что если бы использовались родные расходомеры (датчик, вычисляющий массу теплоносителя), то можно было бы в автоматическом режиме фиксировать протечки в доме и отсылать смс сантехнику — у тебя потоп, бегом в дом!
И вот мы скачали данные с тепловычислителя, и теперь при помощи программы Архиватор мы можем обработать данные со счетчика:
Сама программа достаточно примитивная, и не умеет даже строить графики, и даже не экспортирует в Excel. Но старый добрый ctrl-c ctrl-v позволяют легко справиться с проблемой!
Рисуем графики
Теперь когда данные у нас в Excel, можно рисовать графики и делать какие-то выводы. О, как много можно увидеть на графиках! Например, на первом графике два проседания по объему теплоносителя (верхние темно-синяя и серая линии), проходящего через дом, это вероятнее всего аварии труб в районе. Как раз совпадает с ростом температуры подачи (морозы!)
Правая ось — это Q, показывающая тепло в гигакалориях посуточно. Как я уже сказал по тарифу 1 Гигакалория во Владимире стоит 1987,40 руб. На графике Гигакалории отмечены желтой линией. Вот сколько за месяц гигакалорий дом накопит, эта сумма умножается на 1987,40 руб, затем разбивается по квартирам и вы ее платите в своих квитанциях за коммуналку.
Красная и синяя линии — это температура подачи, и температура обратки. Значения на левой шкале. Зеленая линия — это дельта, т.е. та температура, сколько ваш дом забрал на обогрев. Как видите температура подачи в морозы выше 100 градусов. И если прорвет — это опасно для жизни!
Можно заметить, что несмотря на скачущую температуру подачи, температура обратки всегда примерно одинаковая. Это интересный феномен. Кто-нибудь знает почему? У меня есть версия, но пока оставлю ее при себе, гоу в комменты! 🙂 Обидно на самом деле, не получается экономить на очевидном, на разнице температур.
Темно-синяя и серая линии — это объем теплоносителя проходящий в час через вход и выход соответственно. У нас почему-то уходит немного больше, чем приходит. Либо погрешность измерения, либо что-то где-то течет… Буду разбираться в этом вопросе.
А второй рисунок — это почасовое потребление, за последние сутки. Здесь в основном все пики в гигакалориях (оранжевая линия) связаны с жизнью дома. В 7 утра встают, в 12 обед, в 17 ужин, и в районе 9-10 вечера все принимают душ и активно льют горячую воду. Дисциплинированные какие соседи у меня! 🙂
Ну вот теперь, когда есть возможность отслеживать потребление тепла многоквартирным домом, можно поднимать вопрос об энергоэффективности. Первым делом я планирую обернуть все трубы в доме в энергофлекс, а также установить погодозависимую автоматику, выкинуть из схемы доисторический узел элеватора, поставить современный трехходовой клапан, которым можно управлять автоматически или через Интернет. Все это дело я провожу с тепловизионным контролем. Про тепловизор я думаю также опубликую несколько постов, если аудитория примет данную тематику. Ну и в целом, планирую в плотную заняться вопросом энергосбережения, так как на текущий момент показания энергопотребления дома крайне высокие, что мы отчетливо и видим на графике.
Где устанавливаются тепловые узлы?
Установка тепловых узлов и их обслуживание, как правило, производится в типовые многоквартирные дома, с коммунальными системами отопления.
В свою очередь, узлы учета тепловой энергии устанавливаются в многоквартирном доме для выполнения следующих задач:
- проверки и регулирования эксплуатации теплоносителя и тепловой энергии;
- проверки и регулирования гидравлических и отопительных систем;
- записи данных теплоносителя, таких как температура, давление и объем.
- произведение денежного расчета потребителя и поставщика тепловой энергии, после того как будет осуществлена проверка полученных данных.
При осуществлении установки проекта отопительного оборудования следует учесть. что потребление ресурсов, подаваемых в центральное отопление в многоквартирном доме несет за собой определенные финансовые затраты пользователей (в данном случае – жильцов многоквартирного дома).
Снизить расходы, как и поддерживать работоспособность построенного узла по проектированной ранее схеме продолжительное время, квартирный дом сможет, если будут своевременно будет предоставляться грамотная проверка учетного оборудования и его обслуживание, включая качественный монтаж аппаратуры и трубопровода.
Альтернативный вариант тепловой схемы
Благодаря новым технологиям, которые нашли своё применение и в схеме отопления многоквартирных зданий появилась возможность замены элеватора более совершенным устройством. Автоматизированная система управления отоплением – полноценная альтернатива стандартному элеваторному узлу. Но стоимость такого устройства намного выше, хотя его использование более экономично.
Основным предназначением автоматизированного узла является управление температурным режимом и расходом теплоносителя внутри отопительной системы в зависимости от температуры за её пределами. Для работы такого узла обязательно наличие источника электроэнергии достаточно большой мощности. Но, несмотря на все инновации в сфере отопительных технологий элеваторный узел по-прежнему пользуется популярностях в коммунальных организациях.
На сегодняшний день популярностью пользуются элеваторы в системе отопления с электрическим приводом регулировки. Помимо этого появляется возможность контроля расхода теплоносителя без вмешательства со стороны человека. Из-за того, что такое оборудование обладает неопровержимыми преимуществами, нет никаких предпосылок, что в ближайшее время коммунальные предприятия будут производить его замену.
Мастер-класс. Пример установки радиатора отопления своими руками
Рассмотрим алгоритм действий при подключении батареи к системе отопления.
Шаг 1. Для начала подготовьте и соберите сам отопительный радиатор. Очистите все резьбовые отверстия от заводской смазки, для чего можете использовать специальное чистящее средство и ершик.
Шаг 2. Закончив обработку, удалите остатки чистящего средства бумажной салфеткой
Важно, чтобы отверстия получились максимально чистыми и сухими
Шаг 3. Установите переходники (в нашем примере это ½ и ¾ дюйма).
«американку» от крана на переходник, который вы установили заранее. Для закручивания используйте специальный ключ для «американок». В результате вы оборудуете пару отверстий – входной и выходное (в примере они располагаются диагонально).
Шаг 5. На ненужные отверстия, нуждающиеся в закрытии, установите заглушки.
Шаг 6. Подготовьте хвостовики (это специальные тонкие трубки), разрежьте их. Снимите в хвостовиках внутреннюю фаску
Затем пощупайте внутренние части – важно, чтобы там не чувствовались заусенцы
Подготавливается трубка (хвостовик)Приспособление для снятия внутренней фаски
Шаг 7. Наденьте на трубку гайку, проставку из латуни и резинку (именно в такой последовательности). Затем расширьте трубку при помощи специального приспособления, вставив его внутрь до упора. После расширения трубка уже не сможет выскочить со своего места под действием давления во время эксплуатации отопительной системы.
Шаг 8. Пододвиньте резинку и другие детали к расширенному краю, присоедините переходник.
Шаг 9. Разметьте место, где радиатор будет установлен на стене, в соответствии с описанными выше требованиями. Для начала определите центр подоконника, отмерьте вниз 10 см – крепления батареи будут располагаться именно на таком уровне.
Нанесение разметки
Шаг 10. Прочертите линию установки держателей параллельно подоконнику на расстоянии 10 см. Сами держатели будут крепиться на дюбели.
Черчение линии установки держателей
Шаг 11. Другое крепление будет располагаться в 12 см от поверхности пола по вертикальной центральной линии.
Установка нижнего крепления
Шаг 12. Установите батарею на крепления, выровняйте ее по уровню.
Монтаж радиатора отопления
Шаг 13. Наметьте на стене места, где будут располагаться штробы (в нашем примере прокладку труб будет осуществляться внутри стены). Сделайте это во всех местах, где трубы будут подключены к радиатору.
Разметка для будущего штробирования стен
Шаг 14. Выполните штробирование намеченных ранее участков. Снимите батарею, чтобы было удобнее проводить работы.
Штробирование
Шаг 15. Подготовьте трубки. Нанесите отметку, по которой они будут отрезаться, как показано на картинке ниже.
Подготовка трубок для подключения радиатора
Шаг 16. Подключите к мягкой подводке, проложенной в стене, батарею, кран. Плотно закрутите все соединения. Ввод должен располагаться сверху, а вывод, соответственно, снизу.
Видео – Как установить отопительный радиатор
Если выберите подходящую схему и ознакомитесь со всеми нюансами подключения, то установка радиатора своими руками пройдет быстро и без каких-либо проблем. Нужно лишь действовать внимательно, делать все качественно. От того, насколько правильно вы все сделаете, зависит качество обогрева вашего дома!
Кто совершает сборку теплового узла
В МКД функционирует централизованный обогрев (ТС) и горячее водообеспечение (ГВС), трассовый трубопровод, для подвода которого размещается в подвальных помещениях, оборудуя его стопорными фитингами. Они разрешают выключать внутридомовую структуру выдачи отопления от наружной линии.
Сам теплоузел оборудуется грязевиками, стопорной фурнитурой, КИП и обладает в строении такое оборудование, называемое элеватор. Из них неизменного обеспечения требует, обычно, грязевик, который представляется как труба из стали, Ø 15.9-20 см, он нужен для собрания различных залежей, идущих из трассового трубопровода для безопасности последнего и отопительных средств от залежей.
Устройство термомодуля, его обеспечение, а также чистка – деятельность слесарей, которые обеспечивают этот дом, осуществляя потребности компании, которая предоставляет жилищно-коммунальный сервис.